Bio-friendly preservative systems for enhanced wood durability - the first periodic report on DURAWOOD

IRG/WP 15-30677

B Mazela, M Broda, W Perdoch, L Ross Gobakken, I Ratajczak, G Cofta, W Grześkowiak, A Komasa, A Przybył

The objective of the paper is the DURAWOOD scientific project carried out within Polish-Norwegian Research Programme, which lasts from September 2013 till August 2016. The aim of the project concentrates on the developing of a new, eco-friendly and biocide-free wood protective systems as an alternative to traditional, commonly used preservatives or coatings, containing biocides. Several wood preservatives containing traditional biocides are no longer desired on the market, due to the stricter toxicological requirements and an increasing ecological awareness of consumers. Therefore, formulating new wood protective systems, based on natural compounds, harmless to humans and the environment, is of the principle interest. On the other hand, it will also facilitate a longer period of carbon capture in wood, which will limit the greenhouse effect. Life cycle assessment (LCA), which is planned to perform for the selected model formulations, is a good example for an attempt to explain the interest. Besides, the implementation of novel solutions in wood protection will make it possible to use low quality wood material to manufacture high quality products (e.g. siding or cladding materials). In this manner such eco-friendly wood protection will be also a key factor reinforcing climate protection. The aim of this paper is to present some selected results gained so far. The model wood protecting systems were based on natural (alkaloids, propolis, plant oils) and synthetic (organosilicones, imidazoles) components as well as on neutral inorganic chemical - potassium carbonate. They were used individually or as a formulation for wood treatment. Wood samples made of Scots pine were treated by soaking or vacuum method and were subjected to mycological and fire tests. The so far results show that aminosilanes and mixtures thereof with natural oils are potential wood preservatives against microfungi and wood destroying fungi. Formulations containing aminosilanes, natural oils and potassium carbonate are potential wood fire retardants. It was also found that the most effective alkaloids were cytisine derivatives and caffeine. The highest antifungal activity among tested imidazoles was achieved by AK17 (1,10-di(3-hydroxymethylpyridinium)decanedibromide). The results of chemical analysis present evidence of interactions between compounds of the model formulations and wood chemical components.


Keywords: carbon capture, wood protection, organosilicone compounds, natural oils, potassium carbonate, mass loss calorimeter, mini fire tube

Conference: 15-05-10/14 Vina del Mar, Chile


Download document (475 kb)
free for the members of IRG. Available if purchased.

Purchase this document