IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 6 documents.


Difference of wood decay manner between brown-rot species
2019 - IRG/WP 19-10938
Wood blocks (Cryptomeria japonica) which were decayed by a Polyporales white-rot fungus (Trametes versicolor) and brown-rot fungi (Fomitopsis palustris, F. pinicola, and Wolfiporia cocos), respectively, were analyzed by X-ray diffraction and infrared spectroscopic methods followed by multivariate analysis. In the analyses, the differences in the cellulose crystallinities and infrared spectral patt...
R Kondo, Yo Horikawa, S Nakaba, K Ando, M Yoshida


FTIR analysis of wood blocks decayed by brown-rot fungi
2020 - IRG/WP 20-10959
Calibration curves of the relative lignin contents in Cryptomeria japonica decayed by brown-rot fungi were developed with Infrared Spectroscopy and Klason technique. First, wood decay test was conducted using brown-rot fungi (Fomitopsis palusris, F. pinicola, Wolfiporia cocos, Gloeophyllum trabeum, and Neolentinus suffrutescens) and white-rot fungus (Trametes versicolor) was used as a comparison. ...
R Kondo, Y Horikawa, R Kose, M Yoshida


Effect of MVOC exposure on mycelial growth of wood rotting fungi
2021 - IRG/WP 21-10977
It is well known that wood rotting fungi produce microbial volatile organic compounds (MVOCs) as metabolites. In our previous studies, we have found that some MVOCs produced by wood rotting fungi are common to fungal species tested in the studies, while others are specific to each species. Furthermore, it has been also shown that each wood rotting fungi do not always produce the same type of MVOCs...
S Horikawa, R Konuma, M Yoshida


The iron reduction by chemical components of wood blocks decayed by wood rotting fungi
2021 - IRG/WP 21-10979
Brown-rot fungi, a group of wood rotting fungi, is well known to be one of major microorganisms that cause the deterioration of wooden buildings in Japan and have been considered to use chelator-mediated Fenton (CMF) reaction in concert with hydrolytic and redox enzymes for degradation of wood cell wall. CMF can be described as a non-enzymatic degradation system that utilizes hydroxyl radicals pro...
R R Kondo, Y Horikawa, K Ando, B Goodell, M Yoshida


Morphological observation of wood at the early stages of decay in brown rot and white rot
2023 - IRG/WP 23-11020
Wood rotting fungi, the fungal species causing biodeterioration for wood building, are generally classified into white-rot, brown-rot and soft-rot fungi based on their decay modes. Since white-rot and brown-rot fungi are known to reduce wood strength significantly, it is important to clarify the mechanisms of their wood degradation. White-rot fungi reduce wood strength as the decay progress and de...
R Tsukida, T Hatano, Y Kojima, Y Horikawa, S Nakaba, R Funada, M Yoshida


Effect of volatile organic compounds produced by wood rotting fungi on mycelial growth
2023 - IRG/WP 23-11023
Microorganisms such as fungi or bacteria produce volatile organic compounds (so-called MVOCs: Microbial Volatile Organic Compounds) as metabolites. Some MVOCs have been found to be biologically active, for example inhibition of spore germination, and when fungi of different species encounter each other, the MVOCs pattern change, suggesting that MVOCs play a role as a mediator for biological intera...
S Horikawa, R Konuma, M Yoshida