IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 3040 documents. Displaying 25 entries per page.


Optimum growth conditions for the metal-tolerant wood decay fungus, Meruliporia incrassata TFFH 294
1999 - IRG/WP 99-50142
There is a worldwide need for alternative methods for the treatment and disposal of CCA-treated waste wood. Illman and Highley (IRG/WP 96-10163) reported the isolation of a unique strain of Meruliporia incrassata (TFFH 294) with tolerance to CCA. The strain is capable of degrading CCA treated waste wood, giving a 40% weight loss in the ASTM soil block test. The strain is an ideal candidate for deg...
V W Yang, B Illman


Remediation of pentachlorophenol- and creosote-contaminated soils using wood-degrading fungi
1994 - IRG/WP 94-50021
Microbiological treatment of hazardous wastes has generally been associated with the use of bacteria. During the past decade a significant body of evidence has accumulated that demonstrates that fungi, in particular white-rot fungi, have the ability to degrade a wide range of hazardous organic compounds (xenobiotics) and thus might also be useful for treatment of materials contaminated with these ...
R T Lamar, T K Kirk


Feasibility study for a dedicated pressure treated wood waste management system
2005 - IRG/WP 05-50224-22
For the creosote treated wood coming out of service, it has been estimated an amount of 200 000 t per year for the next twenty years, and 100 000 t per year afterwards. With a limited number of actors, mainly SNCF (as producer and as user), no importations, and available energy recovery options, it appears possible for setting a dedicated wood waste management system, if the SNCF agrees to. For t...
C Cornillier, I Buda, E Heisel, G Labat


Removal of CCA from Spent CCA-Treated Wood
2002 - IRG/WP 02-50192
A novel method for the removal of CCA components from spent CCA-treated wood has been developed. The CCA-treated wood was first converted into liquid in the presence of polyethylene glycol and glycerin at mild temperatures (120 – 150 0C) by using sulfuric acid as catalyst. The resulting viscous liquefied wood was then resolved in acetone/water solvent. The hazardous components (i.e., Cr, As, and...
Lianzhen Lin, Chung-Yun Hse


An evaluation of the potential of ion mobility spectrometry for detection of organic wood preservative components in solutions and treated wood
1994 - IRG/WP 94-20038
For the disposal of wood waste under ecological sound conditions information about its hazardous potential is required. Until now, no highly sensitive rapid analytical methods are available for the detection of wood preservatives under industrial process conditions. Preliminary experiments showed that Ion Mobility Spectrometry (IMS) could be a promising method for rapid detection of organic preser...
A Voss, J N R Ruddick, W J Homan, H Militz, H Willeitner


Bioprocessing preservative-treated waste wood
2000 - IRG/WP 00-50145
Disposal of preservative-treated waste wood is a growing problem worldwide. Bioprocessing the treated wood offers one approach to waste management under certain conditions. One goal is to use wood decay fungi to reduce the volume of waste with an easily managed system in a cost-effective manner. Wood decay fungi were obtained from culture collections in the Mycology Center and Biodeterioration res...
B Illman, V W Yang, L Ferge


Evaluation of fungal remediation of creosote treated wood
1998 - IRG/WP 98-50101-25
Biotechnological remediation of creosote treated wood may be of interest in connection with novel recycling processes. White rot fungi and/or their ligninolytic enzyme systems are supposed to be valuable tools for such processes. This paper reports about results achieved when creosoted wood was treated in solid substrate fermentation with selected white rot fungi after different extraction procedu...
K Messner, S Böhmer


Management of treated wood waste in Canada - Technical and regulatory solutions
2001 - IRG/WP 01-50166-15
A major problem facing the wood preservation industry in Canada is the management of wastes. This refers to wastes generated during the treatment process as well as waste treated wood that is removed from service. The volume of oil borne preservative treated industrial products to be removed from service in Canada over the next 20 years is expected to be fairly constant at approximately 350,000 to...
B Munson


Utility pole recycling and disposal in Eastern Canada
1990 - IRG/WP 3587
Increasing public awareness, prompted by environmental groups such as Greenpeace, concerning the use and disposal of treated wood is becoming a serious issue in Canada. Producers and user groups of treated Pentachlorophenol (PCP) utility poles are at the forefront of public, government and media attention. If, as expected, further limitations on the use and disposal of PCP by the public are impose...
S D Henry


Electrodialytic remediation of CCA-treated wood in larger scale
2005 - IRG/WP 05-50224-20
A pilot plant for the electrodialytic remediation of CCA-treated waste wood has been developed and tested at the Technical University of Denmark. Results from two experiments with different amount of wood chips are presented here. Prior to the electrodialytic remediation the wood was soaked in oxalic acid and phosphoric acid. The main purpose of soaking is to remove the most available fraction fir...
I V Christensen, L M Ottosen, A J Pedersen


World survey on the status of pollution control in the field of wood preservation
1976 - IRG/WP 369
In 1974 the IRG/WP-Secretariat distributed a "Questionnaire on the state of pollution control in the field of wood preservation" which was prepared by the author. The questionnaire consisted of two parts. Part A asked "General questions" on - the position of wood preservation in the respective country - the use of preservatives - the type of application of wood preservatives in different fields - ...
H Willeitner


Selective chromate elimination from the storage-drainage-water of a wood impregnation plant
1980 - IRG/WP 3153
With the Enviro-Chrom-Ex process it is possible to eliminate ecologically and economically hexavalent chromium (chromate) from water selectively. The process which is based on the principle of selective ion exchange works with different chromate concentrations and under the presence of other ions, irrespective of the water hardness. The values of water-offtake reach 0.1 mg CrVI at maximum, causing...
O Wälchli, R Ott, R Hugener, E Graf, B Lieberherr


Rapid analysis - chances and limitations
1999 - IRG/WP 99-50130
The reuse of wood out of service in the particle board industry demands a proper handling and separation of assortments with differing content and nature of preservative. A pre-selection based on visual and olfactorial characteristics can be carried out for certain assortments like sleepers, poles, etc. Problems arise from diffuse and less intensive treated wood which is regularly dip-treated or b...
A Peylo, R-D Peek


Fungal remediation of CCA-treated wood
2004 - IRG/WP 04-50210
This study evaluates oxalic acid accumulation and bioremediation chromated copper arsenate (CCA) treated wood by three brown-rot fungi, Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus and ten mold and staining fungi, Aspergillus niger, Aureobasidium pullulans, Gliocladium virens, Penicillium funiculosum, Rhizopus javanicus, Ceratocystis pilifera, C. peceae, Alternaria alternata...
S N Kartal, Y Imamura


Determination procedure for wood preservatives in waste wood - statistics of sampling and analysis
1998 - IRG/WP 98-50121
In a RTD research programme funded by the German Federal Environmental Agency (UBA - Report No. 126-06-010103) a standardised and validated procedure was developed for sampling and analysing wood preservative components in waste wood. For this investigation a realistic quantity of waste wood from house demolition was used and 80 components analysed. The examination of single wood pieces and woodch...
P Stolz, J Krooss, U Thurmarm, R-D Peek, H Giese


Microbial decomposition of salt treated wood
1993 - IRG/WP 93-50001-22
Specialized microorganisms which are able to convert fixed inorganic preservatives from treated wood into water soluble components are investigated. A number of brown rot fungi like Antrodia vaillantii have been isolated from cases of damage and examined under unsterile conditions with CCA-, CCB-, CCF- and CC-treated wood at retention levels of at least 50% higher than recommended for wood in grou...
R-D Peek, I Stephan, H Leithoff


Biological detoxification of wood treated with salt preservatives
1992 - IRG/WP 92-3717
The use of microorganisms that are capable to convert chemically fixed inorganic preservative complexes from impregnated wood waste into watersoluble components is investigated. A number of fungi were isolated from deteriorated and initially well-treated wood. They revealed an exceptionally high production of organic acids (pH 2). The fungi were identified and used together with others of the same...
I Stephan, R-D Peek


Tendency of the preservative use for impregnation industries in Japan
1998 - IRG/WP 98-50101-05
In Japan, since 1997, the acceptable limit of the arsenic in the waste water become to 0,1 mg/l and the additional regional severer restriction can be established. In this reason, Japanese wood preservation industries intend to use other than CCA, like DDAC, ACQ, Tanalith CuAz, copper-naphthate and zinc-naphthenate, as replacing from CCA. In Jan-June 1997, the share of CCA preservatives was less t...
K Suzuki


Analysis of contaminants in waste wood
2001 - IRG/WP 01-50179
Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, Mainly from Germany and the Netherlands. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treat...
J Jermer, A Ekvall, C Tullin


Co-incineration of CCA-treated wood and Municipal Solid Waste in MSWI plant
2005 - IRG/WP 05-50224-19
The Norwegian Association of Energy Users and Suppliers (Norsk Energi) have carried out incineration tests with addition of 10 % by weight CCA-treated wood waste to municipal solid waste in a MSWI plant. The objective with the test was to determine emissions and composition of bottom ash. The incineration test was done at the Klemetsrud plant in Oslo The main conclusions are: -No significant inc...
D Borgnes, B Rikheim


Growth of selected wood decay fungi on various agar-supplemented media
2003 - IRG/WP 03-10456
The growth rates of a selection of wood decay fungi (brown and white rots) on various agar-supplemented media have been determined and compared. The agar media investigated were Malt extract agar (MEA), Potato dextrose agar (PDA), YMPG agar (yeast extract, malt extract, bacto-peptone, glucose, asparagine and thiamine), YMPG agar (without amino acids) and Beech wood powder agar (BWA). The tested wo...
S A Amartey, M Humar, F Pohleven


Recycling CCA-treated poles with Charterm
2005 - IRG/WP 05-50224-17
After 10 years of Research and Development, the first “Chartherm” industrial unit is now operating since nearly half a year, thanks to Thermya SA, engineering company, current owner of all the “Chartherm” process Patents and Rights. In accord with the recycling contracts signed with several French major companies, the “Chartherm” plant, located near Bordeaux, recycles every day severa...
J-S Hery


Remediation of CCA-treated wood by chitin and chitosan
2005 - IRG/WP 05-50229
Chitin and chitosan are naturally abundant biopolymers which are interest of to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluated the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Expo...
S N Kartal, Y Imamura


Future Directions Regarding Research on the Environmental Impacts of Preservative-Treated Wood: Environmental Impacts of Preservative-Treated Wood. February 8-11, 2004, FL, USA Workshop – Research Needs
2004 - IRG/WP 04-50222
This paper presents a series of documents that focus on research needs for potential future work focusing on the environmental impacts of preservative-treated wood. These documents were developed through a conference sponsored by the Florida Center for Environmental Solutions (FCES), located in Gainesville, Florida. The conference was held in Orlando, Florida, February 8 – 11, 2004 and the tit...
H M Solo-Gabriele, J D Schert, T G Townsend


Scandinavian experience – 25 years’ experience in transforming used creosoted wood into bio-fuel
2005 - IRG/WP 05-50224-18
Swedish experiences show that the best and most efficient way to handle the creosoted wood waste is through combustion. The preparation of creosoted waste wood to fuel chips at IQR AB’s plant in Trollhättan is done by splinting the wood according to a special method. Mainly railroad sleepers, but also other wooden commodities, from all over Europe are delivered to the plant. The wood material i...
T Karlström


Previous Page | Next Page