Moisture and Fungal Durability of Wood-Plastic Composites Made With Chemically Modified and Treated Wood Flour

IRG/WP 13-40648

B K Segerholm, R E Ibach

Evaluating the fungal durability of wood-plastic composites (WPCs) is complicated by the influence of slow moisture sorption. Recently, the American Wood Protection Association (AWPA) Standard Method E10, Testing Wood Preservatives by Laboratory Soil-Block Cultures, was modified to incorporate not only solid wood, but also wood-based composites and WPCs. To simulate long term WPC performance, conditioning of the specimens is now required prior to fungal exposure to increase the moisture content of the specimens. The moisture and fungal durability, as well as the mechanical properties, of two different WPCs were investigated in the laboratory following this new AWPA E10-12 Standard. Wood flour was modified with acetic anhydride and then extruded with high density polyethylene (HDPE). Wood flour was treated with an isothiazolone-based solution and then injected molded with polypropylene (PP). WPCs were conditioned by water soaking either 2 weeks at 22 ˚C or 5 days at 70 ˚C. Weight and moisture content of the WPCs were monitored. Results showed that the acetylation decreased the moisture sorption of the WPCs and showed no mass losses due to decay. The WPC with an isothiazolone-based solution did not show any mass losses due to fungal decay.


Keywords: wood-plastic composites, fungal durability, moisture resistance, acetylation, isothiazolone

Conference: 13-06-16/20 Stockholm, Sweden


Download document (236 kb)
free for the members of IRG. Available if purchased.

Purchase this document