Evaluation of new creosote formulations after extended exposures in fungal cellar tests and field plot tests

IRG/WP 00-30228

D M Crawford, P K Lebow, R C De Groot

Although creosote, or coal tar creosote, has been the choice of preservative treatment for the railroad industry since the 1920s, exuding or "bleeding" on the surface of creosote-treated products has been one incentive for further enhancements in creosote production and utility (Crawford et al., 2000). To minimize this exuding problem, laboratories such as Koppers Industries Inc., USA, and Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of Chemical and Wood Technology, Melbourne, Australia, have developed changes in processing of coal tar that produce distillates with fewer contaminants. This "clean distillate" is then used to formulate "clean creosote" as a preservative. These new, unique creosote formulations are being investigated as part of a program to enhance the use of regionally important wood species in the United States. Four retention levels of each of two new creosote formulations creosote, one pigment-emulsified creosote (PEC) and one creosote formulation that meets the AWPA Standard C2-95 for P1/P13 creosote (AWPA, 1995a), were applied to two softwood species and two hardwood species. Two laboratory procedures, the soil-block and fungal cellar tests (accelerated field simulator), were used to evaluate the four creosote formulations. These procedures characterized the effectiveness of the wood preservatives. The soil-block tests were used to determine the minimum threshold level of the preservative necessary to inhibit decay by pure cultures of decay fungi. In general, the soil block tests showed there was little difference in the ability of the four creosote formulations to prevent decay at the three highest retention levels as summarized in a previous report by Crawford and DeGroot (1996). The soil-block tests will not be discussed in this report. Fungal cellar tests expose treated wood to mixtures of soil-borne fungi that promote accelerated attack. Crawford and DeGroot (1996) discussed the evaluation of the creosote formulations after 17 months of exposure in the USDA Forest Service, Forest Products Laboratory (FPL), fungal cellar. At that point in time data from the fungal cellar tests showed that softwoods are protected better than hardwoods for all four formulations of creosote tested. This report will discuss exposure of the fungal cellar stakes upto 36 months. In addition, field stake tests are being used to verify service life of the new creosote formulations in vivo. Results from accelerated tests are indicative of field performance, but the correlation between laboratory and field results is still being investigated. Field stake tests are regarded as critical, long-term evaluations that provide results most directly related to the performance of treated products in service. In this study, we report on the performance of the creosote formulations after five years of exposure in field tests.


Keywords: CREOSOTE; BLEEDING; CLEAN DISTILLATE; CLEAN CREOSOTE; PIGMENT-EMULSIFIED CREOSOTE; PEC

Conference: 00-05-14/19 Kona, Hawaii, USA


Download document (981 kb)
free for the members of IRG. Available if purchased.

Purchase this document