Fungal degradation of wood treated with metal-based preservatives. Part 2: Redox states of chromium
IRG/WP 96-10164
B Illman, S Bajt, T L Highley
Concerns have arisen about the leaching of heavy metals from wood treated with metal-based preservatives, such as chromated copper arsenate (CCA). Of particular concern is the toxic redox state of chromium and arsenic in aging and decayed CCA-treated wood. Generally, hexavalent chromium is more toxic than trivalent chromium and trivalent arsenic is more toxic than pentavalent arsenic. The desired outcome from treating wood with CCA is total change of Cr(VI) to Cr(III) and As(III) to As(V). As part of an on-going study to determine the fate of copper, chromium and arsenic during aging and decay of CCA-treated wood, we detected Cr(III) and Cr(VI) in situ in CCA-treated southern yellow pine lumber. The redox states of Cr were determined using synchrotron X-ray fluorescence spectroscopy (SXRF). An SXRF microprobe was used to to detect Cr redox states by measuring X-ray absorption near-edge structure (XANES). The ratio of Cr(III) to Cr(VI) was determined (1) on the surface and interior of lumber two years after CCA treatment and (2) in lumber during decay by a CCA-tolerant fungus, Meruliporia incrassata TFFH-294. The XANES spectrum for Cr(VI) has a strong pre-edge feature that is not present in the spectrum for Cr(III). Only the Cr(III) XANES spectrum was detected on the surface and in the interior of the wood, indicating total reduction of Cr(VI). The XANES spectrum for Cr(III) was detected in wood after 12 week decay by Meruliporia incrassata TFFH-294, indicating that the fungus does not oxidize Cr(III) to Cr(VI) during the decay process. We are currently using XANES spectroscopy to detect and map in situ redox states of As in CCA-treated wood.