Extracellular mucilage (ECM) in wood decay basidiomycetes

IRG/WP 02-10439

D Vesentini, D J Dickinson, R J Murphy

The ability of wood decay basidiomycetes to produce extracellular mucilage (ECM) and its relationship with total biomass production is being investigated. Growth and ECM production by the brown-rot fungus Gloeophyllum trabeum (FPRL 108 N) and the white-rot fungus Coriolus versicolor (CTB 863 A) was assessed in liquid culture under different conditions and in the presence of the fungicide cyproconazole. The production of biomass in G. trabeum was significantly influenced by the carbon source, monosaccharides stimulating increased biomass compared with oligosaccharides and polyols. The nitrogen source also significantly affected biomass production, with arginine and L-glutamic acid supporting maximum biomass. The best temperature for growth was 30°C, lower temperature causing a significant reduction in biomass production. The pH optimum for maximum growth was found to be 4.0. ECM production was influenced significantly by the nitrogen source, as well as by the pH of the medium and the temperature of incubation. The greatest proportion of ECM in the total biomass was produced by cultures incubated at 10°C (27% of the total biomass) and at pH 5.0 (16% of the total biomass). The same factors that affected the production of biomass and ECM in G. trabeum, also significantly affected C. versicolor. Again, simple monosaccharides supported the best growth. Amongst the nitrogen sources tested, L-glutamic acid stimulated maximum biomass production (double that of any other nitrogen source tested) whereas the greatest proportion of ECM in the total biomass was produced with arginine and isoleucine as nitrogen sources. The optimal temperature for growth was 22° C, whilst the optimum pH was 5.0. At 10°C the greatest proportion of ECM was produced, which represented about 24% of the total biomass. In terms of pH effects, the greatest proportion of ECM was produced at pH 6.0. The introduction of cyproconazole significantly reduced the amount of biomass produced by both organisms as expected. However, the production of ECM in both species was also affected greatly by the presence of biocide, with the proportion of ECM in the total biomass increasing significantly as the concentration of cyproconazole was raised. The results are discussed with regard to the possible role(s) of ECM in the decay process and its interaction with a specific organic preservative.


Keywords: Extracellular mucilage (ECM), basidiomycetes, Gloeophyllum trabeum, Coriolus versicolor, biomass, carbon source, nitrogen source, pH, temperature, cyproconazole

Conference: 02-05-12/17 Cardiff, Wales, UK


Download document (335 kb)
free for the members of IRG. Available if purchased.

Purchase this document