Effects of climatic factors and material properties on mould growth on untreated wooden claddings

IRG/WP 17-10884

S Karlsen Lie, G I Vestøl, O Høibø, L Ross Gobakken

Mould growth is an important contributor to colour change of untreated wood exposed outdoors. Predicting the development of mould growth is therefore important to ensure successful use of untreated wood as a façade material. More knowledge about the factors affecting mould growth on outdoor exposed wood is required to give better predictions. In this study, climatic factors and material properties affecting mould growth have been investigated by exposing selected wooden specimens (aspen, pine sapwood, pine heartwood, spruce sapwood and spruce heartwood) to 8 different climates for 91 days. The climates were defined in a factorial design with two levels of relative humidity (65 and 85 %), wetting period (2 and 4 hours per day) and temperature (10 and 25 °C), respectively. The degree of mould growth was visually evaluated once a week during the exposure period. Aspen and pine sapwood were the substrates most susceptible to mould growth. There were no significant differences in susceptibility between pine heartwood and spruce heartwood, but the difference between heartwood and sapwood was significant for both pine and spruce. The effect of density on mould growth was tested for the spruce heartwood material, but was not found to reduce the residual variance significantly. However, all the tested climatic factors affected mould growth significantly; relative humidity was most important, while there was a somewhat smaller effect of wetting period and a minor effect of temperature. Overall, increased RH, longer wetting period and increased temperature had a positive effect on the mould growth. It was found a significant interaction between temperature and relative humidity, indicating that the temperature had larger effect on the mould growth at lower relative humidity, and that the relative humidity had larger effect at lower temperature. There was a tendency that the relative performance of the substrates was dependent on climate, but this interaction effect was not significant for any of the climatic factors.


Keywords: mould, blue stain fungi, material resistance, relative humidity, temperature, wetting

Conference: 17-06-04/08 Ghent, Belgium


Download document (618 kb)
free for the members of IRG. Available if purchased.

Purchase this document