Your search resulted in 9 documents.
Resistance of painted pine sapwood to mould fungi. Part 1. The effect of waterborne paints and fungicides on mould growth
1997 - IRG/WP 97-10233
The efficacy of different fungicides in acrylate and alkyd paints to protect pine sapwood against mould fungi was studied. The acrylate and alkyd paint systems with and without a preservative dipping treatment prior to painting were also used. Differences in the efficacy of the fungicides to protect the paint film were found. The paint films with isothiazolon and IBPC were resistant against mould ...
H Viitanen, P Ahola
Resistance of painted wood to mould fungi. Part 2. The effect of wood substrate and acrylate paint systems on mould growth
1997 - IRG/WP 97-10234
Resistance of acrylate paint systems on different types of pine and spruce sapwood to mould fungi was studied. Dipping into the preservative prior to painting, a primer with and without a fungicide (propiconazole + IPBC 0.50 + 0.2%) and a topcoat with and without a fungicide (propiconazole + IPBC 0.25 + 0.12%) were combinations of the treatments studied. The efficacy of the treatment systems varie...
H Viitanen, P Ahola
Improvement of some technological and biological properties of poplar wood by impregnation with aqueous macromolecular compounds
1992 - IRG/WP 92-3721
Poplars (Populus spp) belong to the most important tree species in afforestation programs of the Netherlands. Due to their rapid growth, the wood quality is usually low. Therefore, studies were performed to elucidate whether some technological properties and the resistance against fungal attack could be improved by impregnation with water-soluble resins. The results showed that swelling and shrink...
R D Peek, H Militz, J J Kettenis
Low polymer levels containing bioactive monomer polymerized in situ provide resistance to Gloeophyllum trabeum
1995 - IRG/WP 95-30066
Wood preservation based on in situ polymerization of potentially bioactive monomers has been studied. Tributyltin oxide acrylate (TBTOA) and pentachlorophenol acrylate (PCPA) were synthesized. Wood samples were treated at 2, 5, 10, 15 and 20% by weight solutions with varying amounts of crosslinker (trimethylolpropane trimethacrylate, TMPTM) and polymerized in situ in wood samples (2.54 x 2.54 x 0....
R E Ibach, R M Rowell
Resistance of painted wood to mould fungi. Part 3. The effect of weathering, wood substrate and fungicides on mould growth
1998 - IRG/WP 98-10284
The effect of 6 month outdoor weathering on the resistance of acrylate paint systems on different types of pine and spruce sapwood to mould fungi was studied. Dipping into the preservative prior to painting, a primer with and without a fungicide (propiconazole + IPBC 0.50 + 0.2%) and a topcoat with and without a fungicide (propiconazole + IPBC 0.25 + 0.12%) were combinations of the treatments stud...
H Viitanen, P Ahola
Termite and fungal resistance of in situ polymerized tributyltin acrylate and acetylated Indonesian and USA wood
2000 - IRG/WP 00-30219
Wood [Indonesian pine (IP), Indonesian Jabon (IJ) and USA southern yellow pine (USP)] was either in situ polymerized with tributyltin acrylate (TBTA) or acetylated and then exposed to termite and fungal degradation both in laboratory tests and field exposure. The TBTA woods had an average weight percent gain (WPG) of 11% for IP, 12% for IJ, and 10% for USP. The acetylated woods had a WPG of 15-27%...
R E Ibach, Y S Hadi, D Nandika, S Yusuf, Y Indrayani
Fungal decay of acrylate treated wood
2004 - IRG/WP 04-30357
Natural durability of wood species is variable. Chemical wood preservatives, such as biocides are necessary for extension of their service life. Many methods have been developed to increase the resistance of wood and wood products against wood-destroying organisms during the last years. The most frequently used methods are chemical and thermal modification of wood. In wood modification the basic c...
Z Tiralova, L Reinprecht
Evaluation of chemical densification of three hardwood species through in-situ electron beam polymerization
2020 - IRG/WP 20-40893
Hardwoods are the most suitable species for wood flooring for their appearance as well as their hardness. Yet, improving hardness can provide substantial benefit for the wood flooring market. Chemical densification of wood and in-situ polymerization through electron beam technology was chosen to increase hardness of three hardwoods (Yellow birch (YB) (Betula alleghaniensis Britt.), Sugar maple (SM...
J Triquet, P Blanchet, V Landry
Surface chemical wood densification through in situ electron beam polymerization: description and dose study
2022 - IRG/WP 22-40933
Traditional wood chemical densification processes can be used to improve wood mechanical properties by increasing density of the material throughout its thickness. While mechanical surface densification has heavily been investigated, surface treatments involving impregnation of monomers remain unexplored. This study describes a new material, surface densified through lateral impregnation of acryla...
J Triquet, P Blanchet, V Landry