IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 2884 documents. Displaying 25 entries per page.


Biological resistance of steam-compressed wood pretreated with boric compounds
1999 - IRG/WP 99-30190
Wood compression under heating is aimed to enhance dimensional stability and surface hardness. Preservative treatment with an appropriate chemical is additionally required for the protection of wood against biological agents under hazardous service conditions. Boron pretreatment of compressed wood was targeted to a mutual benefit of increasing biological resistance of compressed wood as boron was converted to a more stable form through hydration and dehydration reactions under steaming at elevated temperatures in a closed system. Accordingly, boric acid (BA) (at 0.25, 1.00 and 4.70% aqueous concentration)- or phenylboronic acid (PBA) (at 0.34, 0.50, 1.00 and 2.00% aqueous concentration)-impregnated Japanese cedar (Cryptomeria japonica D. Don) specimens were compressed at their radial direction to 50% dry set at 171, 180 and 200°C. The compressed specimens were subjected to decay and termite tests following exposure to a severe ten-cycle wet/dry processes according to Japanese Industrial Standard JIS K 1571 (1998). BA pretreated-compressed wood exhibited remarkable resistance against a white-rot fungus, Trametes versicolor, but not so effective against a brown-rot test fungus, Fomitopsis palustris even at high boron loads which resulted in a high termite resistance. PBA pretreatment appeared to be very effective against both decay fungi and Formosan subterranean termite when wood specimens were compressed at high temperatures and steam pressure.
M K Yalinkilic, W Dwianto, Y Imamura, K Tsunoda, M Takahashi


A new process for in situ polymerization of vinyl monomers in wood to delay boron leaching
1998 - IRG/WP 98-40110
Efforts were accelerated on effective use of boron compounds in wood preservation owing to their environmentally safe characteristics and relatively low costs in addition to their well-known high bioactivity and fire resistant properties. Although having these unique favorable properties, they are readily leachable from treated wood at humid conditions. Therefore, they had limited market for exterior applications. A supplementary combination treatment with vinyl monomers; styrene (ST) and methylmetacrylate (MMA) was studied in order to extend the service life of boron treated wood. Sapwood specimens of Japanese cedar (Cryptomeria japonica D. Don) first treated with boric acid (BA) at 1.00% aqueous solution concentration. Vinyl monomers were impregnated after air-drying of BA-treated wood at ambient temperatures. Polymerization was performed during compression of monomer impregnated wood to a 50 to 70% dry set of radial dimension under a hot-press heated to the polymerization temperatures of 60 and 90°C required by the selected catalysts VAZO (a, a' - Azobis-isobutyronitrile) and benzoyl peroxide, respectively. Wood acquired a perfect dimensional stability and remarkably high moisture exclusion efficiency with the minimum water holding capacity with the compressed-wood polymer composite (CWPC) process that was approved by submerging of the test specimens in tap water, boiling water exposure to a 10 cycles accelerated severe weathering. As a result, boron leaching rate from CWPC pretreated with BA was considerably slower than that from ordinary WPC. Scanning electron microscope (SEM) observations were found explanatory for controlled-but-continuous boron leaching determined analytically. An effective bulking was found necessary to accompany to polymerization in cell wall with an even distribution of monomer in wood. Grafting to cell wall components can be tried further to achieve an envelop polymerization of boron deposited sites in WPC for better boron immobility.
M K Yalinkilic, W Dwianto, Y Imamura, M Takahashi


Primary Study on Compressed Preservative-treated Wood (CPW) for Outdoor Applications
2008 - IRG/WP 08-40412
In this study, the compressed wood samples pre-treated with hot water bath or water spraying were immersed in the ammoniacal copper quat –type D (ACQ-D) preservative solution to get compressed preservative-treated wood (CPW). The liquid absorption and the recovery rate of compression deformation of the compressed wood was determined, as well as the surface hardness, the distribution of density and CuO retention in the thickness direction of CPW. The results showed that: (1) the recovery rate and liquid absorption were closely related with each other. Generally a higher recovery rate of compressed deformation corresponded to a higher liquid absorption; (2) the liquid absorption of compressed wood with pre-treatments was about 1.5 times of the untreated control samples, and the surface hardness of the CWP prepared with this method was 3~4 times of that of the untreated control samples; while the corresponding values of those without pre-treatments were more than 2.0 times and about 1.6 times, respectively; (3) the density distribution of the CWP with pre-treatments were much more uniform in the thickness direction, additionally the retention of CuO appeared to be much higher and had a clear trend of higher retention on surfaces and lower inside compared with that of the CWP without pre-treatments. In conclusion, the CPW prepared in this study can achieve both surface densification and preservation, which are suitable for outdoor applications.
Jinzhen Cao, Jia Mao


Preliminary investigation of biological resistance, water absorption and swelling of thermally compressed pine wood panels
2008 - IRG/WP 08-40396
Wood can be modified by compressive, thermal and chemical treatments. Compression of wood under thermal conditions is resulted in densification of wood. This study evaluated decay and termite resistance of thermally compressed pine wood panels at either 5 or 7 MPa and at either 120 or 150?C for one hour. The process caused increases in density and decreases in thickness of the panels; however, laboratory decay resistance tests using one brown rot fungus and one white rot fungus revealed that thermally compressed wood was not resistance against the fungi tested. More interesting results were found in laboratory termite resistance tests. As pressure and temperature increased up to 7 MPa and 120?C, mass losses in the specimens decreased gradually when compared to control specimens. However, the specimens compressed at 7MPa and 150?C showed higher mass losses in comparison with the specimens compressed at 7 MPa and 120?C. Decay and termite resistance of such materials is still controversial even though density is improved under thermal processing.
Ö Ünsal, S N Kartal, Z Candan, R Arango, C A Clausen, F Green III


Bioresistance of Poplar Wood Compressed by Combined-Hydro-Thermo-Mechanical Wood Modification (CHTM) Process
2010 - IRG/WP 10-40532
Bioresistance of treated Poplar wood by CHTM process (Combined-Hydro-Thermo-Mechanical Wood Modification) was studied in the current research work. Resistance against brown rot fungus Gloeophyllum trabeum as well as the soft rot decay was the main concern of this work. Poplar wood blocks were hydrothermally treated at temperatures of 120,150 and 180°C for holding time of 0, 30 and 90 min. afterwards, the blocks were compressed at temperatures of 160 and 180°C for 20 min. The treated blocks were oven dried for 24 hours at 103±2°C. Small specimens were cut from the blocks and exposed to the brown rot fungus according to EN 113. Also, mini-stakes were prepared and exposed to soil according to ENV 807. Results revealed that the bioresistance of the CHTM treated poplar wood increased due to the hydrothermal modification. Increase of the holding time as well as the press temperature reduced the fungal activity in the CHTM treated wood. According to the results of previous and the current works, the treated wood at temperature of 150°C for a holding time of 30min and compressed at press temperature of 180°C was selected as the best treatment.
L Khademi-Bami, B Mohebby


Danish wood preservatives approval system with special focus on assessment of the environmental risks associated with industrial wood preservatives
2001 - IRG/WP 01-50166-01
The following is a description of the procedure used by the Danish Environmental Protection Agency to assess the environmental risks associated with preservatives used in the pressure impregnation of wood. The risk assessment covers issues considered to be of significance for the environment and which are adequately documented so as to allow an assessment. Such issues are persistence and mobility in soils, bioaccumulation and the impact on aquatic and terrestrial organisms. Unless required in special circumstances, the assessment does not apply to birds and mammals as the normal use of preservative treated wood is not expected to involve any noteworthy exposure of these groups. Approval of wood preservatives will be based on a general assessment of the environmental risk associated with the normal use of wood treated with the preservative in a realistic worst case situation. The assessment may address other aspects such as disposal and total life cycle.
J Larsen


Data sheet on wood-boring insects. Apate monachus Fabricius. 2. Position systématique, nomenclature, identification et distribution - Espèces végétales attaquée
1981 - IRG/WP 1105
R L A Damoiseau


Confocal laser scanning microscopy of a novel decay in preservative treated radiata pine in wet acidic soils
1997 - IRG/WP 97-10215
Light microscopy of radiata pine (Pinus radiata D. Don) field test stakes (20x20x500mm3) exposed in wet acidic (pH 3-4) soil for 12 - 24 months showed predominance of an unusual type of decay characte-rised by tunnelling attack of wood cell walls. After two years decay was moderate to severe in wood treated to ground contact CCA specifications and also equivalent retentions of creosote, and a number of new generation preservatives. Relative to other New Zealand temperate test sites and also an Australian tropical site, the New Zealand acidic soil test site was very aggressive. Correlative scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to elucidate the micromorphology of this attack. Tunnels of diameter 0.2-5 µm were present throughout all layers of the cell wall, and their orientation was not related to cellulose microfibril orientation. They also showed no preference for particular cell wall layers, indicating a lignin degrading capability. CLSM images showed that living, connecting fungal hyphae were present in the cell lumina and tunnels. This type of attack was predominant in wood that was highly saturated with water whereas wood that was less moist was predominantly attacked by classical white rot. Ongoing isolation and incubation studies in conjunction with further microscopy should enable identification of the fungal species involved.
R N Wakeling, Ying Xiao, A P Singh


Effect of acetylation on decay resistance of wood against brown-rot, white-rot and soft-rot fungi
1989 - IRG/WP 3540
Effect of acetylation on decay resistance of wood was investigated using wood blocks of Cryptomeria japonica, Pinus densiflora, Albizia falcata and Fagus crenata. Blocks were treated with uncatalyzed acetic anhydride for different lengths of time and exposed to Tyromyces palustris, Serpula lacrymans, Coriolus versicolor and unsterilized soil. The action of OH-radical on acetylated wood was also examined using Fenton's reagent. The enhancement of decay resistance by acetylation was revealed clearly for all cases of exposures but varying with fungal and wood species used. For a brown-rot fungus Tyromyces palustris, the weight loss reached almost nil in all woods at 20 WPG (weight percent gain) of acetylation, after the striking decrease from 10 to 15 WPG. For a white-rot fungus Coriolus versicolor, it was counted until 12-15 WPG in the perishable hardwoods used, but not in a softwood Cryptomeria japonica, even at 6 WPG. In cases of another brown-rotter Serpula lacrymans and soil burial, effect of acetylation was intermediate between Tyromyces palustris and Coriolus versicolor. Anti-degradation mechanism by acetylation was discussed, from these weight loss - weight gain relationships, and the IR-and 13C-NMR spectral analyses of fungus-exposed wood.
M Takahashi, Y Imamura, M Tanahashi


The IRG..Chanelling information and ideas into the mainstream of wood preservation technology
1985 - IRG/WP 5241
IRG Secretariat


Wood preservation in Poland
2004 - IRG/WP 04-30362
Dynamic growth of market demand for wooden elements and articles, generated in Poland increase of interest in industrial preservation. Today, Poland is a substantial producer and exporter of wood made products. Majority of exported wood - approximately 70% - is scotch pine (Pinus silvestris L.), which, due to its natural durability, requires preservation.
A Kundzewicz


Wood preservatives: Field tests out of ground contact. Brief survey of principles and methodology
1976 - IRG/WP 269
This paper contains the following spots: 1.: The general need for field tests. 2.: Interests and limits of field tests in ground contact. 3.: Various methods in use for out-of-ground contact field tests. 4.: Fungal cellar tests are they an alternative to above-ground decay exposure tests? 5.: Conclusions.
M Fougerousse


The effect of certain wood extractives on the growth of marine micro-organisms
1977 - IRG/WP 438
S E J Furtado, E B G Jones, J D Bultman


Management of the wood and additives wastes in the wood processing industries: Problematics and technical answers review
1996 - IRG/WP 96-50073
Management pathways for pure wood subproducts are well known and used; but as soon as additives like preservatives, glues, varnishes or coatings are present within the wood wastes, their disposal or valorization becomes more tricky. The different kinds of mixed wood wastes of the wood processing industries, from the sawmill to the furniture manufacture, are identified herewith and their diversity is examined. These wastes can be classified according to their danger characteristics, taking into account the type of additives, their concentration, their availability for the environment, the physical state of the waste. Different disposal pathways are then considered. Combustion, with the possibility of energetic valorization seems the best answer for a major part of these wastes. But this is only possible if good combustion conditions are defined, so that no harmful products are emitted. Moreover, these conditions must be affordable on the technical and economical point of view. Then, some wastes cannot be burned in such a simple way, and need a larger approach, which is presented in this document.
S Mouras, G Labat, G Deroubaix


Biological screening assays of wood samples treated with creosote plus chemical additives exposed to Limnoria tripunctata
1980 - IRG/WP 408
Laboratory methods for exposure of treated wood coupons to Limnoria tripunctata are described. Chemical additions to creosote were screened using this method. Three pesticides, Endrin, Kepone, and Malathion proved particularly effective. The addition of varying percentages of naphthalene to creosote using several treatment methods are currently being assayed. Results to date show that the coupons treated by the empty cell method have better performance than those prepared by the toluene dilution method. The naphthalene coupons treated by the full cell method show no attack after six months' exposure.
B R Richards, D A Webb


Sequestration of copper ions by the extracellular mucilaginous material (ECMM) of two wood rotting basidiomycetes
2004 - IRG/WP 04-10533
The radial growth rate of colonies originating from either whole or ECMM-free inocula of Coriolus versicolor was investigated. The presence of ECMM allowed colonies to maintain higher growth rates than those form ECMM-free inocula up to 2 mM CuSO4 in the medium. The ECMM of C. versicolor and G. trabeum was able to reduce the diffusion of copper ions in solution. The ‘raw’ ECMM of both fungi had a greater ability to reduce the diffusion of copper ions than ECMM which had been subject to dialysis to remove soluble, low molecular weight components. The ‘insoluble’ fraction of ECMM for both species was more effective than the ‘soluble’ fraction at reducing the diffusion of copper ions. It is concluded that ECMM confers some protection to hyphae against the toxic effects of copper ions on growth in vivo and that this due to the binding of copper ions to both the polysaccharide and to low molecular weight components of the ECMM
D Vesentini, D J Dickinson, R J Murphy


Improvements of monitoring the effects of soil organisms on wood in fungal cellar tests
1996 - IRG/WP 96-20093
Accelerated testing the durability of preservative treated timber in a so called "fungal cellar" or "soil-bed" to evaluate its performance in ground contact is widespread practice. In order to obtain a more accurate and reproducible estimate of preservative performance, several institutes, among them the BAM in Berlin, have routinely carried out static bending tests in addition to visual examination. These tests were usually performed with a defined maximum load or deflection path regardless of the remaining degree of elasticity of the test specimens. Recent studies at the BAM revealed that by modifying the method, i.e. by restricting the applied load to the non-destructive interval for each individual test specimen, the calculated modulus of elasticity (MOE) reflect the changing strength properties caused by biological deterioration and allow within a relatively short time valuable predictions on the service life of the treated timber in soil contact.
I Stephan, S Göller, D Rudolph


Working Group I Sub-group 5 'Insects in dry wood'. Plan for data sheets
1982 - IRG/WP 1173
S Cymorek


Penichroa fasciata (Stephens) (Col. Cerambycidae) a pest in wood materials
1988 - IRG/WP 1365
Penichroa fasciata (Stephens) (Col. Cerambycidae) is found to be a frequent pest occurring in hardwood in storage in Italy. This paper reports the characteristic for identification, biological features, distribution and timber liable to attack.
A Gambetta, E Orlandi.


Environmental status of wood preservation in the UK
1994 - IRG/WP 94-50018
The environmental status of wood preservatives and treated wood in the UK is summarised. The current legislatory position with respect to approvals, supply, use and waste disposal is considered. The bibliography at the end of this paper contains details of all publications referred to together with other relevant information although this cannot be exhaustive.
M Connell


Utilization of curcumin for detection of presence of boron in wood
1982 - IRG/WP 3191
It has been shown that curcumin is not a reliable reagent for detecting boron in wood that has been attacked by fungi
M-L Edlund


A suggested method to test the toxicity of wood preservatives towards the house longhorn beetle
1977 - IRG/WP 275
This method was developed in the Institute for Wood Technology in Sarajevo, Yugoslavia and is used to get quick information on the toxicity of wood preservatives against house longhorn beetle (Hylotrupes bajulus). The method can be used for superficially treated or deeply impregnated wood blocks, and by using small or normal size test material it can be used as a laboratory or field test, and also for accelerated infestation of test material out of ground contact. The paper is given to the International Research Group on Wood Preservation as a suggested method which could possibly be used as a standard. Only the laboratory test method is described.
N Vidovic


Aspects of diffusion of boron through wood
1984 - IRG/WP 3298
Boron compounds have been shown to be toxic to a wide range of wood destroying insects and fungi. They are cheap, have low mammalian toxicity and their application in the treatment of wood does not demand specialized equipment. These attributes make them specially attractive to developing countries. Currently, however, little is known about the mechanism of diffusion of boron through wood. Effective treatment with boron preservatives requires good understanding of how the preservatives diffuse through wood. This paper presents a research proposal with the overall objective of determining the relative importance of structural wood components in determining diffusion rates.
S Iddi


Manual of a mini treating plant for waterborne preservative treatment of timber and bamboo
1999 - IRG/WP 99-40130
This contributional article includes machinaries and equipments necessary for a small wood treating plant for the pressure treatment of tim bers with waterborne preservatives along with the cost and design. The preservative treatment limitations, treatment schedules and specifications for different products have been described. The cost of a mini treating plant will be 6,00,000 Tk. (13,000 US$), suitable for preserving timber and bamboo products for indoor and outdoor uses and will out last teak wood. The additional durability of timber and bamboo will create economically and environmentally safe conditions.
A K Lahiry


Analysis of tebuconazole in wood treated with Tanalith™ E
1999 - IRG/WP 99-20158
A simple gas chromatographic method for determining tebuconazole in Tanalith™ E treated wood is described. A two step sequential extraction procedure with methanol was used. Sample extracts were analysed without cleanup or concentration using capillary column GC with thermionic specific detection. The performance of the method was assessed using radiata pine (Pinus radiata) sapwood, radiata pine heartwood, and spotted gum (Corymbia citriodora) sapwood as substrates. Recoveries from fortified samples ranged from 97% to 103%. The precision of the method was assessed by analysing a number of actual treated wood samples over a range of retention levels, which produced relative standard deviations in the range of 3% to 8%.
D E Ferlazzo


Next Page