IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 16 documents.


Localization of oxalate decarboxylase in the brown-rot fungus Postia placenta
1996 - IRG/WP 96-10161
Oxalate decarboxylase, the enzyme that breaks oxalic acid down into formic acid and carbon dioxide, was recently detected in mycelial extracts of the brown-rot fungus Postia placenta. Differential centrifugation was used to demonstrate that the enzyme is loosely associated with the hyphal surface. Enzyme activity can be removed by washing the hyphae with a low pH buffer. Only low levels of activit...
J A Micales


The long road to understanding brown-rot decay. A view from the ditch
1995 - IRG/WP 95-10101
Interest in understanding how brown-rot fungi decay wood has received increasing interest in recent years because of a need to identify novel targets that can be inhibited for the next generation of antifungal wood preservatives. Brown-rot fungi are unique in that they can degrade holocellulose (cellulose and hemicellulose) in wood without first removing the lignin. Furthermore, they degrade holoc...
F Green III, T L Highley


Biological variability in the oxalate/oxalate decarboxylase system among five isolates of the wood-degrading fungus Meruliporia incrassate
2006 - IRG/WP 06-10573
The “dry-rot” wood decay fungus Meruliporia incrassata has recently attracted attention, primarily in the western coastal United States, as a particularly destructive pest of building material. Recently, the US Environmental Protection Agency (EPA) has accepted a voluntary withdrawal of the historically effective chromated-copper arsenate (CCA) as a preservative for wood used in residential se...
C Howell, J Jellison


Oxalate production and calcium oxalate accumulation by Gloeophyllum trabeum in buffered cultures
1994 - IRG/WP 94-10075
Most basidiomycetous fungi produce oxalic acid as a result of their metabolic activities and nutrient procurement. There is currently a renewed interest in the role that oxalic acid may play in the decomposition of wood by basidiomycete fungi. It has been observed that although most wood degrading fungi have the capacity to produce oxalic acid, not all of these organisms express this capacity equa...
J H Connolly, J Jellison


Microbial decomposition of salt treated wood
1993 - IRG/WP 93-50001-22
Specialized microorganisms which are able to convert fixed inorganic preservatives from treated wood into water soluble components are investigated. A number of brown rot fungi like Antrodia vaillantii have been isolated from cases of damage and examined under unsterile conditions with CCA-, CCB-, CCF- and CC-treated wood at retention levels of at least 50% higher than recommended for wood in grou...
R-D Peek, I Stephan, H Leithoff


Biological detoxification of wood treated with salt preservatives
1992 - IRG/WP 92-3717
The use of microorganisms that are capable to convert chemically fixed inorganic preservative complexes from impregnated wood waste into watersoluble components is investigated. A number of fungi were isolated from deteriorated and initially well-treated wood. They revealed an exceptionally high production of organic acids (pH 2). The fungi were identified and used together with others of the same...
I Stephan, R-D Peek


Serpula lacrymans the dry rot fungus. Revue on previous papers
1989 - IRG/WP 1393
It is found that the Dry rot fungus Serpula lacrymans grows in houses only because of its need for basic materials to neutralize the oxalic acid production or heavy metals which celate the oxalic acid. The average distance from the mycelium to the basic materials is found in average to be 14.2 cm with a variation from 0-100 cm. In contrast to Serpula lacrymans the Coniophora puteana and the Rigido...
J Bech-Andersen


Gypsum effects on ‘dry rot’ wood degradation as a function of environment
2007 - IRG/WP 07-10624
‘Dry rot’ fungi are a unique group of brown rot fungi that can degrade wood away from ground contact where other fungi fail to colonize. Successfully occupying this niche is partially due to efficient water and nutrient transport, but mobilizing elements, notably calcium (Ca) and iron (Fe), from adjacent building materials has also been implicated in their success. Here we report a series of t...
J Schilling, J Jellison


Serpula lacrymans – calcium, iron, and foundering wooden boats
2009 - IRG/WP 09-10691
Serpula lacrymans is one of the most destructive wood-degrading brown rot fungi in temperate environments. Its virulence has often been linked to its ability to grow over non-woody materials and extract calcium (Ca) or iron (Fe) to promote wood degradation in buildings. This fungus has also been a severe problem in historic wooden warships and in modern wooden vessels, sometimes leading to founder...
J S Schilling, S M Duncan


Toward an assessment of copper bioavailability in treated wood
2010 - IRG/WP 10-20445
Many modern wood preservative systems rely on copper (Cu). Some oxalate-producing fungi detoxify Cu by immobilizing it in crystals, and this may decrease its physiological availability (bioavailability). Cu bioavailability may also decrease during wood treatment. Cu retention in wood, however, is typically measured as a weight-to-volume concentration without an estimate of its bioavailability and ...
J S Schilling, J J Inda


The effects of copper proximity on oxalate production in Fibroporia radiculosa
2014 - IRG/WP 14-10823
Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose of this study was to assess d...
K M Jenkins, C A Clausen, F Green III


Effectiveness of Copper Indicators in Treated Wood Exposed to Copper Tolerant Fungi
2014 - IRG/WP 14-20554
Wood treated with a copper based wood preservative will typically turn a green color. While the depth of copper penetration can be readily discerned from the green color of the copper it is standard practice in research and commercial treating plants to make use of a color reagent such as Chrome Azurol S, Rubeanic acid or PAN indicator to reveal the penetration more clearly. When copper treat...
L Jin, K Brown, A Zahora, K Archer


Production of reactive oxygen species in the presence of oxidized iron and oxalate under conditions mimicking brown-rot fungal degradation of wood
2016 - IRG/WP 16-10861
The biochemical role of oxalate in the fungal solubilization of iron is well known, but additional information is needed on the role that oxalate plays in the brown-rot decay of lignocellulose. In this study iron sequestration from iron and iron oxide-hydroxides was assessed with regard to the function of a chelator-mediated Fenton (CMF) reaction and the generation of reactive oxygen species (ROS)...
Yuan Zhu, Liangpeng Zhuang, B Goodell, Jinzhen Cao, J Mahaney


Fungal decay of archaeological waterlogged oak timber: role of the mineral content
2016 - IRG/WP 16-10873
In service, wood foundation poles are subjected to water level fluctuation in soil. While wood is saturated by water only bacterial decay occurs. When oxygen content increases and moisture content decreases, severe fungal attack may occur. To evaluate the long term fungal durability of wood foundation pole in the context of service, 300 years waterlogged archaeological wood poles were used. The oa...
A Besserer, M Letellier, E Fredon, Q Kleindienst, M-L Antoine, C Perrin, J Lallemand, C Rose, M-C Trouy


Untreated and copper-treated wood soaked in sodium oxalate: Effects of decay by copper-tolerant and copper-sensitive fungi
2017 - IRG/WP 17-10888
Copper is widely used as the primary component in wood protectants because it demonstrates a broad range of biocidal properties. However, a key concern with using copper in wood preservative formulations is the possibility for brown-rot basidiomycetes to resist the toxic effect. Many brown-rot basidiomycetes have evolved mechanisms, like the production and accumulation of oxalate, which helps thes...
K M Ohno, G T Kirker, A B Bishell, C A Clausen


Mineralization of European oak with various ionic salt solutions to achieve an in situ precipitation of calcium oxalate
2019 - IRG/WP 19-40861
Thin specimens of European oak (Quercus spp.) with the dimensions of 4 × 20 × 50 mm3 were treated with various aqueous ionic salt solutions of calcium chloride, potassium oxalate and calcium acetate. Additionally, the oak was treated with combinations of calcium chloride and potassium oxalate, as well as calcium acetate and potassium oxalate with the aim to precipitate in situ the water insolubl...
T Franke, T S Volkmer