IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 24 documents.


Radical changes in the requirements for more safe pressure impregnation in the Nordic countries in 1988
1990 - IRG/WP 3581
After introduction of quality control schemes and standards in the Nordic countries during the seventies, the first radical change of the standards and practice of work took place after pressure from the labor unions and authorities in 1988 and 1989 in Denmark and in Sweden. A new class of preservation with less retention for out of ground contact use was introduced, fixation times were prolonged ...
B Moldrup


Non-enzymatic Gloeophyllum trabeum decay mechanisms: Further study
2001 - IRG/WP 01-10395
Information will be presented on the mechanisms involved in, and potential application of, non-enzymatic wood decay by brown rot decay fungi. Specifically, the hypothesized role of low molecular weight phenolate derivatives will be discussed in relation to non-enzymatic degradation of wood. The mechanism of binding of iron by cellulose, and binding and reduction of iron by fungal derivatives and m...
B Goodell, J Jellison


Susceptibility of angiosperm sapwood to white-rot fungal colonization and subsequent degradation: a hypothesis
1997 - IRG/WP 97-10211
It has long been recognized that angiosperm sapwood in nature is relatively easily and preferentially degraded by white-rot fungi. This susceptibility to white-rot fungi is generally believed to be mainly caused by the structure and concentration of angiosperm lignin. However, an explicit explanation as to why lignin structure makes a particular wood vulnerable to white-rot colonisation and subseq...
T Schultz, D D Nicholas


The effect of low molecular weight chelators on iron chelation and free radical generation as studied by ESR measurement
2000 - IRG/WP 00-10367
The focus of this work was to improve our current knowledge of the non-enzymatic mechanisms involved in brown-rot decay. Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR), is an attractive technique for the identification and study of chemical species containing unpaired electrons (such as radicals and certain transition metal species). ESR spin-trapping techniques...
Yuhui Qian, B Goodell


Characterization of glycopeptide from white-, brown- and soft rot fungi
2002 - IRG/WP 02-10424
Extracellular low-molecular-weight substances that catalyze a redox reaction between O2 and electron donors to produce hydroxyl radicals have been isolated from wood degrading cultures of white-rot, brown-rot, and soft-rot fungi. They contained protein, neutral carbohydrate, and Fe(II). These substances were glycosylated (glycated) peptides and suggested to form Amadori product (ketoamine). The...
H Tanaka, S Itakura, A Enoki


Generation of hydroxyl radical by the brown-rot fungus, Postia placenta
1988 - IRG/WP 1360
In an electron spin resonance (ESR) survey of various liquid cultures and wood slivers innoculated with the brown-rot fungus, Postia placenta, the spin trap dimethyl-l-pyrroline N-oxide (DMPO) was used to detect the presence of the hydroxyl radical. The ESR spectra for the paramagnetic DMPO- hydroxyl radical adduct was observed in (1) nitrogen-limited, liquid cultures having 1.0% glucose or 0.1% c...
B Illman, D C Meinholtz, T L Highley


Destaining wood sapstains caused by Ceratocystis coerulescens
1996 - IRG/WP 96-10159
Fungal sapstain does not reduce the strength of wood, but it does discolor the wood, detracting from its appearance and decreasing the value of wood and wood products. The purpose of this investigation was to assess whether wood sapstain caused by Ceratocystis coerulescens could be destained and existing growth eradicated. The hydroxyl radicals generation under optimized conditions destained the s...
S C Croan


Extracellular hydrogen peroxide producing and hydrogen peroxide reducing compounds of wood decay fungi
1991 - IRG/WP 1516
Extracellular H2O2-producing and H2O2-reducing compounds were isolated from wood-containing cultures of all the white-rot and brown-rot fungi and Ascomycetes which well degraded wood, but were not detected in the culture of the fungi which degraded little wood. The compounds are glycopeptides with a low molecular weight, require H2O2 for one-electron oxidation, catalyze the redox reaction between ...
A Enoki, G Fuse, H Tanaka


Relationship between degradation of wood, cellulose or lignin-related compounds and production of hydroxyl radical or accumulation of oxalic acid in cultures of brown-rot fungi
1994 - IRG/WP 94-10062
The degradation activities of brown rot fungi against wood, cellulose, and lignin-related compounds were measured in cultures containing glucose or wood as a carbon source. Also the activities of one-electron oxidation and hydroxyl radical production and the amount of oxalic acid present in the cultures were measured. The degradation activities of the fungi against wood, crystalline cellulose and ...
S Itakura, T Hirano, H Tanaka, A Enoki


Preliminary studies of the performance of iron chelators as inhibitors of brown rot (Coniophora puteana) attack
1996 - IRG/WP 96-10185
This paper describes experiments to examine the proposal that the presence of iron is essential for brown rot fungi to utilize hydroxyl radicals remote from the hyphae as a means of converting the wood into a food source. reliminary test results are presented from trials using three different iron chelators impregnated into Scots pine (Pinus sylvestris) sapwood blocks. Their relative effects on th...
E D Suttie, R J Orsler, P M Wood


Extracellular hydrogen peroxide-producing and one-electron oxidation system of brown-rot fungi
1990 - IRG/WP 1445
Wood-component-degrading compounds involved in the initial degradation of the cellulose and lignin in wood were isolated from wood-containing culture of brown-rot fungi, Gloeophyllum trabeum and Tyromyces palustris and partially purified by gel filtration on Sephadex G-25 and DEAE-Sepharose ion-exchange chromatography. The compounds were glycoproteins. The molecular weights of the glycoproteins as...
A Enoki, S Yoshioka, H Tanaka, G Fuse


The effect of a chelator mediated fenton system on activation of TMP fibres and decolorization of synthesized dyes
2004 - IRG/WP 04-50223
The purpose of this work is to improve our current knowledge of the non-enzymatic mechanisms involved in the brown rot degradation of wood, but also to study the potential applications of a chelator-mediated Fenton system in activation of wood fibers and decolorization of synthesized dyes. In this work, Electron Spin Resonance (ESR) spin-trapping techniques were used to study the generation of hyd...
Yuhui Qian, B Goodell, J Jellison


Wood and filter paper degradation, phenol oxidase and one-electron oxidation activities by the white rot fungus Ceriporiopsis subvermispora
2003 - IRG/WP 03-10486
The activities of one-electron oxidation and phenol oxidase during incubation of cultures of the white-rot basidiomycete Ceriporiopsis subvermispora containing either glucose or wood were periodically measured. Further, the degradation activities against wood and filter paper were examined during the course of cultivation. Weight losses of Japanese beech wood and Japanese cedar wood after 12 wee...
H Tanaka, S Itakura, A Enoki


Environmentally benign wood preservatives based on organic biocide antioxidant combinations: A brief review of laboratory and field exposure results and discussion of a proposed mechanism
2004 - IRG/WP 04-30335
The combination of various organic biocides with commercial antioxidants generally increased the biocides’ efficacy 2-3 fold against wood-destroying fungi in short-term laboratory decay tests, and some positive results have been obtained after 2-4 years of outdoor exposure. The two antioxidants principally examined, propyl gallate and butylated hydroxytoluene, are low cost and, since both are f...
T Schultz, D D Nicholas, W Henry, C Pittman, D Wipf, B Goodell


Fungal detoxification of organotin biocides
1985 - IRG/WP 1258
The ability of a range of wood decaying fungi to inactivate bis(tri-n-butyltin) oxide (TnBTO) in the extracellular growth medium, in stationary liquid culture was determined. A distinction between the ability to tolerate the fungicide and to inactivate it was made: the white-rot organism Coriolus versicolor being the most efficient inactivator. In an attempt to determine the extracellular agents r...
P S Belford, D J Dickinson


The involvement of extracellular substances for the generation of hydroxyl radical during wood degradation by white-rot fungi
1997 - IRG/WP 97-10218
The activities of one-electron oxidation, hydroxyl radical generation, and phenol oxidase during the incubation of cultures of four white-rot fungi containing either glucose or wood were periodically measured. Further, their degradation activities against wood were examined during the course of cultivation. The generation of hydroxyl radical was correlated to the activity of wood degradation and i...
H Tanaka, S Itakura, A Enoki


Free radical process controlled by manganese peroxidase and lipid-related metabolites produced by Ceriporiopsis subvermispora
2001 - IRG/WP 01-10412
Ceriporiopsis subvermispora, a specific lignin-degrading fungus produced free unsaturated fatty acids (USFAs) including 9,12-octadecaienoic asid, together with saturated fatty acids (SFAs) at an incipient stage of cultivation on wood meal cultures. In prolonged cultivation period after two weeks, the amount of intact fatty acids decreased with increasing in organic hydroperoxide and TBARS producti...
T Watanabe, M Enoki, S Sato, Y Honda, M Kuwahara, N Shirai, K Messner


A model for attack at a distance from the hyphae based on studies with the brown rot Coniophora puteana
1995 - IRG/WP 95-10104
In timber infested by brown rot fungi, a rapid loss in strength is attributed to production of hydroxyl radicals (HO·) at a distance from the hyphae. The immediate precursor is Fenton's reagent (Fe(II)/H2O2), but the pathways leading to Fe(II) and H2O2 have remained unclear. Cellobiose dehydrogenase, purified from cultures of Coniophora puteana, will couple oxidation of cellodextrins to ...
S M Hyde, P M Wood


Isolation and characterization of hydroxyl-radical-producing glycopeptide genes from the white-rot basidiomycete Phanerochaete chrysosporium
2006 - IRG/WP 06-10588
During wood decay, the white-rot basidiomycete Phanerochaete chrysosporium secretes low-molecular-weight glycopeptides that catalyze a redox reaction between O2 and electron donors to produce hydroxyl radical. This reaction accounts for most of the hydroxyl radical produced in wood-degrading cultures of P. chrysosporium. In combination with phenol oxidases, hydroxyl radical is believed to play a r...
H Tanaka, G Yoshida, Y Baba, K Matsumura, S Itakura, A Enoki


Phenol oxidase activity and one-electron oxidation activity in wood degradation by soft-rot deuteromycetes
2007 - IRG/WP 07-10615
Wood degradation, one-electron oxidation activity as assayed by ethylene generation from 2-keto-4-thiomethylbutyric acid (KTBA), and phenol oxidase activity were measured in cultures of six deuteromyce fungi, with glucose or wood as the carbon source. The four fungi that degraded Japanese beech wood had higher one-electron oxidation activities in wood-containing cultures than in glucose-containing...
H Tanaka, M Yamakawa, S Itakura, A Enoki


Methods for Determining the Role of Extractives in the Natural Durability of Western Redcedar Heartwood
2007 - IRG/WP 07-20356
The durability of western redcedar heartwood is influenced by a number of different extractives operating by different mechanisms. In order to guide a systematic isolation of extractives with high fungal toxicity, a micro-bioassay has been developed for measuring the fungal toxicity of extractive fractions. Two additional assays quantify the anti-radical and metal chelating properties of cedar ext...
R Stirling, C R Daniels, J E Clark, P I Morris


The involvement of hydroxyl-radical-producing glycoprotein from the white-rot basidiomycete Ceriporiopsis subvermispora in wood decay
2009 - IRG/WP 09-10688
White-rot decay can be divided into two subtypes. One type involves the simultaneous degradation of all wood components through the formation of erosion troughs with a progressive thinning of wood cell walls. This type of decay is consistent with a model in which several polymer-degrading enzymes act on the exposed surfaces of the wood cell walls, producing progressive erosion from the lumen to th...
H Tanaka, Y Inoue, T Morikawa, S Itakura, A Enoki


Non-stochiometric oxidation and ROS generation promoted by guaiacol lignin structures and lignocelluose surfaces may be a component of brown rot fungal degradation mechanisms
2019 - IRG/WP 19-10937
Model guaiacol compounds representing lignin monomers, as well as DHP-lignin and wood flour of controlled particle size were used to assess iron reduction at the pH of the natural wood cell wall. All compounds functioned as electron donors for ferric iron, with the lignin monomers demonstrating capacity for non-stochiometric reduction of iron with multiple moles of ferric ion reduced per mole of l...
Y Tamarua, M Yoshidaa, L D Eltisb, B Goodell


The anti-weathering mechanism of extractives in thermally modified Scots pine
2019 - IRG/WP 19-40880
Results from the electron spin-resonance spectroscopy (ESR) analysis indicated that thermally modification of wood can inhibit the generation of phenoxyl radicals during UV irradiation and consequently lead to the increase of the color stability of wood. In order to clarify the evolution and role of extractives in thermally modified wood during the process of weathering, the compositions of aceton...
H Shen, J Cao