Your search resulted in 45 documents. Displaying 25 entries per page.
Diagnosis of failures in wood beams from historical house in Banská Štiavnica – Relations between ultrasonic measurements and bending properties
2010 - IRG/WP 10-20437
Various degrees of rot and other damages in ceiling beams with dimensions of 6500-8800 x 160-200 x 240-310 mm (length x height x width) situated in one historical bourgeois house in the UNESCO town Banská Štiavnica, Slovakia were determined visually and by the PUNDIT-plus ultrasonic device. Subsequently, for seventeen of the most bio-damaged fir (Abies alba Mill.) beams chosen for exchange were ...
L Reinprecht, M Pánek
Influence of heat treatment intensity on the structural integrity of 14 timber species
2012 - IRG/WP 12-40586
Thermally modified timber (TMT) is characterized by improved durability and dimensionally stability, but strength properties, especially the dynamic ones, are compromised at the same time. Because dynamic standard tests require high efforts and time, the high-energy multiple impact (HEMI) –test was developed for the fast and reliable characterisation of the structural integrity of TMT, showing a...
C R Welzbacher, C Brischke, G Maier
Utilization of thermodesorption coupled to GC-MS to characterize volatiles formation kinetics during wood thermodegradation
2012 - IRG/WP 12-40587
Identification of volatile degradation products produced during wood mild pyrolysis is important to have better insight on thermodegradation mechanisms. Previous studies have shown that thermodesorption coupled to GC-MS is an attractive tool to characterize and quantify products formed during wood thermodegradation indicating an higher susceptibility of hardwoods to thermodegradation compare to so...
K Candelier, S Dumarçay, A Pétrissans, M Pétrissans, P Kamdem, P Gérardin
Surface energy characterization of thermally modified wood using inverse gas chromatography
2013 - IRG/WP 13-20532
The objective of this work is to characterize surface energetics of thermally modified wood. Such information may be useful for a better understanding and predictions of adhesion properties between the modified wood and other material systems, e.g. coatings, adhesives or matrices in composites. Inverse gas chromatography (IGC) was used to study the surface energy characteristics of thermally modif...
S Källbom, K Segerholm, D Jones, M Wålinder
The Chelator Mediated Fenton System in the Brown Rot Fungi: Details of the Mechanism, and Reasons Why it has Been Ineffective as a Biomimetic Treatment in some Biomass Applications – a Review
2014 - IRG/WP 14-10828
The chelator-mediated Fenton (CMF) reaction requires the action of two types of chelating compounds. The first chelator, oxalate, solubilizes and then sequesters iron, and the second chelator reduces iron. Iron reduction must be controlled near the fungal hyphae to prevent damaging Fenton chemistry from occurring in that location. Similarly, iron reduction must be promoted within the wood/plant ce...
B S Goodell, M Nakamura, J Jellison
Nondestructive Detection of Biodeterioration in Indonesian Traditional Wooden Construction of “Joglo”
2014 - IRG/WP 14-10834
To decide the repairing and reinforcement method for wooden constructions, it is necessary to get the enough and precise information on the status of the construction beforehand, especially the distribution and the degree of the biodeterioration, such as decay or insect attack (e.g. termite attack).
In this study, damage of biodeterioration to teak wood used in Indonesian traditional wooden const...
Y Yanase, T Mori, T Yoshimura, Y P Prihatmaji, J Sulistyo, S Doi
Changes in mechanical and chemical properties of wood exposed outdoors
2014 - IRG/WP 14-20550
The aim of this study was to investigate differences in certain mechanical and chemical properties of three different wood species (common beach (Fagus sylvatica), Norway spruce (Picea abies), and copper-ethanolamine (CuE) impregnated Norway spruce (Picea abies)) that were exposed in use class 3 (CEN, 2006) for periods between 4 and 30 months. The results show, that changes in the investigated me...
N Thaler, C Brischke, D Žlindra, V Vek, M Humar
The effect of preservative treatment on mechanical strength and structural integrity of wood
2015 - IRG/WP 15-30667
The use of wood for demanding construction applications is increasing in Europe. Wooden constructions are frequently designed of susceptible conifer wood, which is endangered by wood decay fungi in wet applications. Therefore in many cases treating wood with preservatives is unavoidable to ensure the desired service life. However, chemical treatment of wood can result in changes of its mechanical ...
M Humar, D Kržišnik, C Brischke
Fabrication and characterization of MicroPCMs filled wood-plastic composites: Effects of polyethylene glycol on melamine–formaldehyde shell material
2016 - IRG/WP 16-40728
Microencapsulated phase change materials (MicroPCMs) containing dodecanol were fabricated using melamine-formaldehyde (MF) or polyethylene glycol 200 modified melamine-formaldehyde (PMF) resin as the shell materials by in situ polymerization. Wood flour/high-density polyethylene (WF/HDPE) composites with MF shell MicroPCMs (MF-MicroPCMs) or PMF shell MicroPCMs (PMF-MicroPCMs) were prepared, respec...
Xi Guo, Jinzhen Cao
The influence of log soaking temperature and thermal modification on the properties of birch veneers
2016 - IRG/WP 16-40749
In veneer manufacture the logs are routinely soaked in heated water baths in order to soften the wood prior to peeling. The temperature of the water may vary greatly between batches; however, the influence of log soaking temperature on veneer properties has had little research attention. Uncontrolled moisture is known to cause problems in wood-based materials, while thermal modification offers a m...
S Källbom, K Laine, M S Moghaddam, A Rohumaa, K Segerholm, M Wålinder
Durability of energy efficient wooden buildings: a building physical point of view
2017 - IRG/WP 17-40812
The drive for more energy efficient and sustainable buildings resulted in an increased popularity of wooden buildings, even in countries with a masonry tradition. Often guidelines and prescriptions then are copied from other countries. Different climatic boundary conditions and tradition of finishing, though, do require different moisture tolerance criteria. This is clearly the case for water vapo...
S Roels, J Langmans
Evaluation of decay and energy properties from thermally modified biomasses during fungal deterioration by NIR-spectrometry
2021 - IRG/WP 21-40922
This study is focused on the prediction of fungal weight loss (WL) and high heating value (HHV) from raw and torrefied waste lignocellulosic feedstocks, according to their exposure duration to wood-destroying fungi, using near infrared spectroscopy (NIR) and chemometrics models.
Sugarcane bagasse, coffee husk, eucalyptus and pine shavings were torrefied at 290 °C in a screw reactor, during 5, 7...
B de Freitas Homem de Faria, P Santana Barbosa, J Valente Roque, A de Cassia Oliveira Carneiro, P Rousset, K Candelier, R F Teofilo
Biological assessment of bio-based phase change materials in wood for construction applications
2022 - IRG/WP 22-40935
Solid wood can serve multi-functionality for energy savings in buildings. The study reveals the results of bio-deterioration and degradation of solid Scots pine wood used to incorporate single or multicomponent fatty acid mixtures as bio-based phase change materials (BPCMs). The sapwood samples were impregnated with capric acid (CA), methyl palmitate (MP), lauryl alcohol (LA) and a mixture of coco...
S Palanti, A Temiz, G Köse Demirel, G Hekimoğlu, A Sari, M Nazari, J Gao, M Jebrane, T Schnabel, N Terziev
Effects of preservative impregnations on wettability and surface free energy properties of Eucalyptus grandis wood
2023 - IRG/WP 23-40978
Wettability and surface free energy (SFE) are crucial parameters for evaluating the adhesion thermodynamics of solid surfaces. Hence, this study investigated the effects of copper azole (CA) and disodium octaborate tetrahydrate (DOT) preservative impregnations on Eucalyptus grandis wood wettability and SFE. Wettability was determined in terms of contact angles with polar (water) and non-polar (dii...
A A Alade, C B Wessels, H Stolze, H Militz
Developing thermal-energy storage systems based on Kraft lignin-glyoxal and organic phase-change material modified wood
2024 - IRG/WP 24-30810
This study investigated the use of modified wood as a thermal-energy storage material through the integration of paraffin-based phase-change materials (PCMs). The objective was to evaluate the influence of Kraft lignin-glyoxal prepolymer on the properties of wood modified with PCMs. The implementation of the modified wood involved preparing PCM emulsions, synthesizing lignin-glyoxal prepolymer, an...
C-F Lin, O Karlsson, D Jones, D Sandberg
Structural health assessment of wood - A comparison of methods for determining the spatial spread of fungal infestation in beams and rafters
2025 - IRG/WP 25-11051
Wood decay in buildings can cause severe economic losses, require comprehensive refurbishment, and removal of decayed wooden elements from the building. The latter aims at restoring the structural integrity of the component or the entire building through replacement, and at preventing the infestation from spreading further. In practice, components are cut out of the structure to such an extent tha...
C Brischke, N Sommerfeld, E Flohr, A K Mayer, S Bollmus
The non-energy utilization of low-quality wood from the invasive species Prunus serotina
2025 - IRG/WP 25-30814
Alien invasive species in Europe, such as Prunus serotina, can significantly impact ecosystem structure and function. This species provides low-quality timber, which is most often used for energy purposes in the form of biomass. In the era of policies focused on a circular economy, seeking methods to extend the life cycle of raw materials and wood products is necessary. For this purpose, the wood ...
W Perdoch, P Kołwzan
Enhancing strength, fire and biological resistance of wood through structural and chemical modification
2025 - IRG/WP 25-30831
Wood, a renewable and versatile biopolymer, has been a fundamental material to construct traditional and advanced composites for building construction, furniture, transparent composites, and various other applications. Despite its many advantages, including its aesthetic appeal, workability, and relatively low cost, wood possesses inherent limitations such as susceptibility to biological, flame an...
R Abouzeid, M S Koo, Q Wu
Biocomposites based on fungal mycelium and beech particles impregnated with BPCM (bio-phase change material) for thermal energy storage
2025 - IRG/WP 25-41034
The building sector is a major contributor to Europe's carbon emissions, and transition to a bio-based economy is essential for achieving long-term sustainability goals. The European Union has set ambitious targets for climate-neutral heating and cooling by 2050, which requires the widespread adoption of energy-efficient and environmentally friendly technologies. A key element in this transition i...
E Nigrone, F De Francesco, J Conti, M Jebrane, M Nazari, N Terziev, S Palanti
Recycling wood treated with copper-based preservatives to produce hard carbon materials for energy storage applications
2025 - IRG/WP 25-50401
In this study, we explored the possibility of recycling wood treated with copper-based preservatives to produce hard carbon materials for use in energy storage devices. We pyrolsed both untreated and copper-treated wood into hard carbon, conducted microstructural and physicochemical characterisation, prepared electrode materials, and evaluated their electrochemical performance in sodium-ion batter...
D Huo, J-P Bonnet, A Jamali