IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 170 documents. Displaying 25 entries per page.


Detection and Assessment Healthy Situation of Poulus Euphratica Oliv. with Stress Wave
2009 - IRG/WP 09-20415
The defects of tree trunk of Poulus euphratica Oliv were inspected by stress wave method and diagnosed with transmission time and velocity. The reference values of transmission time of unit length and velocity from stress wave were used to assess the healthy situation of tree trunk. The goal is provide fast inspecting technology and assessment method for the historic trees in China. The results shown: 1) Single-path method of stress wave is effective nondestructive method to diagnoses the defect of wood, but it can not effective assess wetwood in standing trees using the reference value of unit length transmission time (670 m/s )and average velocity (942 m/s), there would have more accurate assessment results if reference value be summarized from sound wood and used to diagnoses healthy situation of tree trunk; 2) Two directions testing of stress wave can not accurate diagnose the edge crack and small area decay in stem, multitude point test should be used to get more useful information of wood ; 3) the multitude point test from single-path stress wave shown that the trend of velocity of healthy tree trunk was increasing firstly with the angle increase and decreasing when the transmission angle more than 180o. There has a binomial formula relationship between velocity and transmission angle and the correlation coefficient arrived at 0.9942. This velocity trend of cross-section in healthy tree trunk and binomial formula can be used to diagnoses the defects of tree trunk.
Shanqing Liang, Nana Hu, Lanying Lin, Feng Fu


Danish wood preservatives approval system with special focus on assessment of the environmental risks associated with industrial wood preservatives
2001 - IRG/WP 01-50166-01
The following is a description of the procedure used by the Danish Environmental Protection Agency to assess the environmental risks associated with preservatives used in the pressure impregnation of wood. The risk assessment covers issues considered to be of significance for the environment and which are adequately documented so as to allow an assessment. Such issues are persistence and mobility in soils, bioaccumulation and the impact on aquatic and terrestrial organisms. Unless required in special circumstances, the assessment does not apply to birds and mammals as the normal use of preservative treated wood is not expected to involve any noteworthy exposure of these groups. Approval of wood preservatives will be based on a general assessment of the environmental risk associated with the normal use of wood treated with the preservative in a realistic worst case situation. The assessment may address other aspects such as disposal and total life cycle.
J Larsen


Programme section 2, Test methodology and assessment
1997 - IRG/WP 97-20126
IRG Secretariat


Proposed methodology for the assessment of safety indexes
1990 - IRG/WP 3562
Safety Indexes (SI)s are developped on the same concept as Efficacy Indexes (EI)s: EIs are retentions of wood preservatives (percentages of the critical values "efficacy") which are presumed efficient for a given biological class of risk. In the same way, SIs are retentions of wood preservatives (percentages of the critical values "safety") which are taken as acceptable for human health and the general environment. EIs and SIs as well are derived from different types of bioassays and related to objectives of quality which may be either regulatory or harmonized within the programmes of the Standard Committees (CEN TC/38 for example). Critical Values are characteristics of wood preservatives; EIs and SIs are characteristics of treated wood; they vary with the different classes of risks.
G Ozanne


Determination of the preventive efficacy against wood destroying basidiomycetes fungi, EN V 839 - CEN/TC 38 WG 9
1993 - IRG/WP 93-20015
The WG 9 of CEN TC/38 has presented to EC a mycological test to assess efficacy of preservatives applied by surface process. This method is now an experimental standard (EN V 839) which has to be approved by the different european delegations. The following paper is not the standard as it has been proposed but is a presentation of the principle of the method. The experimental standard specifies a laboratory method of test which gives a basis of the assessment of the preventive action of a wood preservative when applied as a surface treatment against Basidiomycetes fungi. This method is applicable to formulations of preservatives in a ready to use form (organic formulations, organic water-dispersible formulations, water-soluble materials). Series of susceptible wood species specimens are treated on longitudinal faces whith the preservative in test using brushing as surface procedure. Test specimens are then exposed by an intermediate mesh to feeder blocks infestedby pure culture of Basidiomycetes fungi in sterile conditions and penetration of fungi is assessed on cross section sawn in the samples at the end of the test.
D Dirol


Assessment of losses of wood preservatives from treated wood by leaching into the environment
1993 - IRG/WP 93-50001-13
Wood preservative chemicals may be lost from treated timber by leaching into water or soil. The degree to which this might occur and its effect on the environment is difficult to assess quantitatively due to the absence of appropriate test methods. This paper describes work to assess test methodology capable of allowing the rates of loss of wood preservative from treated timber to be quantified. The possibility of adapting simple laboratory equipment to monitor preservative losses from treated wood has been investigated. Losses due to leaching from selected faces of treated wood blocks when immersed in water have been monitored, using disodium octaborate as a model water-soluble preservative. The investigation has demonstrated the importance of distinguishing between transverse, radial and tangential surfaces when considering potential losses and the subsequent likely environmental impact of treated timber in service.
R J Orsler, G E Holland


Quantitative assessment of the condition of field specimens
1981 - IRG/WP 2154
Suggestions for a discussion on the desirability of an extension to the existing procedure of assessment of the condition of field specimens by adding more objective, reproducible methods in order to obtain earlier and more specific information than at present on the effect of biological attack on strength and other properties of the specimens as well as the time aspect.
H Friis-Hansen


La rôle de l'expert dans l'évaluation toxicologique
1990 - IRG/WP 3589
C Boudene


Surveillance médicale des personnels exposés aux produits de préservation du bois
1990 - IRG/WP 3588
J-C Aubrun


Reliability-based service life prediction methodology for assessment of water protection efficiency for coatings on wood
2003 - IRG/WP 03-20268
Assessment of water protection efficiency according to EN 927-5 has been shown to give significant differences in water absorption values for different types of coatings on wood. It is shown that the combination of EN 927-5 and an artificial weathering procedure gives more information regarding expected durability and long-term performance than a single measurement of water absorption on fresh, unweathered wood. A combination of water absorption measurement and artificial weathering could become a useful tool in product development as well as in benchmarking. Together with statistical tools, such as reliability-based service life prediction methodologies for prediction of the service life of coating systems a reduction in testing time may be achieved. The predicted service life can then be the input to integrated life cycle assessment of products for wood protection.
J Ekstedt


The collaborative developement of soil acceptance criteria for timber treatment chemicals in New Zealand
1995 - IRG/WP 95-50040-34
In New Zealand, the issue of potential contamination on timber treatment sites arose in the late 80's due to the long history of use of PCP by the industry. One of the recommendations from the task group set up to investigate the issue was the development of a set of acceptance criteria to define trigger levels for remediation. A technical group from the government, industry and regional councils supported by experienced environmental consultants was formed by the Ministry for the Environment to prepare the criteria. Guidelines for soil and landfill criteria were drafted covering the commonly used preservative products based primarily on human health risk exposure. Guidelines were also developed for specific beneficial uses where other risk exposures may dominant. The guidelines have been peer reviewed and issued in draft form for public comment. Several benefits have flowed from this process namely, a relatively short timeframe, low cost, multiple party ownership, practicality of application and ease of administration.
H C Boyd


Techniques for field assessment of particulate termite barriers
2000 - IRG/WP 00-10376
Field testing of particulate termite barriers poses problems different from those encountered when testing preservatives or soil termiticides. To ensure an adequate level of challenge, and minimise the risk of a Type II error, the experimental design must promote termite activity and provide a significant, readily detectable, food source which can only be reached by penetrating the test barrier. In this paper we describe the development of techniques for tests with the wholly subterranean Mastotermes darwiniensis and epigeous mound builder Coptotermes acinaciformis and the application of these techniques to explore the particle/building material interface.
D M Ewart, E R Rawlinson


An appraisal of methods for environmental testing of leachates from salt-treated wood (2)
1998 - IRG/WP 98-50110
For wood preservatives for use in hazard class 4 information on the ecotoxicity of preservatives and ingredients as well as on the effect of losses from impregnated timber is needed for a proper environmental risk assessment. In the evaluation of a suitable test procedure the leaching behaviour of copper-based formulations was studied using analytical and ecotoxicological test methodology. These studies included an analytical comparison of end grain sealed and not sealed wood blocks. Using sensitive bioindicators in ecotoxicological studies, real effects of the leachates gained from EN 84 were measured. The possibility to use a laboratory test procedure based on the leaching according to EN 84 is shown and discussed for the risk assessment of treated timber.
H W Wegen, A Platen, G M F Van Eetvelde, M Stevens


Biocides - Efficacy assessment and doses for wood preservatives (product type 8). Local/geographical aspects. Termite control as case study
1999 - IRG/WP 99-20181
Currently, the efficacy of a wood preservative, as biocidal product type 8, is assessed as a ‚critical value' (CV), an efficient dose (retention in wood at a given depth of penetration). CVs are planned to be adapted for exposure to basic target organisms (5 hazard classes) and additional requirements concerning the occurrence of local target organisms in relation with climate, building design and relevant economical impact. Among them, the termite case study is illustrative. The vote of a french law, on 26 may 1999, aiming to protect consumers and to organize termite control puts termites, a "local target at the euro scale and a universal one in some euro territories", in the spotlights of actuality and helps to point out some of the remaining questions raised by the implementation of Dir 98/8 on Biocides. Based on CEN/TC/38 simulated use tests, which doses have to be used for conditions of exposure and climate, ranging from polar to tropical? Practical proposals are made to take into accound local prescription based on actual target organisms, and move on to standard biocide profiles.
G Ozanne


Protocols for assessment and approval of wood preservatives in the Nordic countries
1994 - IRG/WP 94-20046
This paper reviews the protocols presently in use in the Nordic countries (Denmark, Finland, Iceland, Norway and Sweden) for assessment and approval of wood preservatives with respect to their biocidal efficacy.
J Jermer, B Henningsson


Quantitative assessment of field specimens. A proposal for discussion
1980 - IRG/WP 2143
H Friis-Hansen


Programme section 2, Test methodology and assessment
1996 - IRG/WP 96-20094
IRG Secretariat


Assessment of the natural durability of four Ghanaian hardwoods against the white-rot fungus Coriolus versicolor and soft-rot using laboratory tests
2003 - IRG/WP 03-10498
The natural durability of two lesser-utilized species (LUS) (Corynanthe pachyceras Welw. (pamprana) and Glyphaea brevis (Sprengel) Monachino) (foto) from three forest districts, and two related primary species (Nauclea diderrichii (de Wild.) Merr. (opepe) and Nesogodornia papaverifera (A. Chev.) R. Capuron.) (danta) from one district in Ghana is assessed against Coriolus versicolor Linnaeus Quelet and soft rot. Durability of wood from different radial and axial positions in each stem is assessed using modified EN113 and EN(V)807 tests. Mean percentage weight losses (%MWL) are compared to determine the influence of position in the stem and growth site (for the LUS) on durability. Natural durability classes are also determined. Radial and axial variations in durability exist within the stems of all four hardwoods against C. versicolor and soft rot. At the same axial position, radial durability normally increases progressively from the outer sapwood towards the inner heartwood, whereas at the same radial positions, durability normally decreases from the base to the crown of the stem. Occasionally, the middle and crown are more durable. Growth site also influences durability of the LUS. For the primary species, the natural durability classes determined in this study differ from those assigned to them in literature. Durability ranking for the hardwoods against white rot is: N. diderrichii> C. pachyceras> N. papaverifera> G. brevis; with that against soft rot being: C. pachyceras >N. diderrichii >N. papaverifera >G. brevis.
C Antwi-Boasiako, A J Pitman, J R Barnett


Assessment of contamination of soil and water at a CCA treatment plant: A demonstration project
1996 - IRG/WP 96-50067
Soil, sludge, dust and water samples were collected at a copper/chromium/arsenic wood preservation plant. Contamination of soil, sludge, dust and surface water with copper, chromium and arsenic was detected. Levels of contamination were sufficiently high to require remediation. Contamination originated from preservative solution dripping from recently treated wood. Migration of contaminants was via surface water run-off; poor housekeeping and operational procedures; forklift movements and wind-blown dust.
P N Durrant, D C R Sinclair, G M Smith


Environmental risk assessment of preservative treated wood
1998 - IRG/WP 98-50101-19
This paper reviews the status of the environmental risk assessment of preservative treated wood and confirms the distinction between the risks presented by wood preservatives and preservative treated wood. The paper proposes a tiered approach to risk assessment and discusses the rationale. Flowcharts are presented which summarise the tiered approach to risk assessment, show the tests required, and show how the results can be used to make an environmental risk assessment of preservative treated wood. The need to generate data specifically for risk assessments, particularly PEC and PNEC values, is recognised. Test methods in existing Standards (EN 84, EN1250-2) are shown to be unsuitable to produce data which can be used in risk assessments. Realistic test methods are proposed using commodity-sized treated wood exposed to simulated in-service situations. A test method to generate risk assessment data for wood in ground contact and wood above ground is described. The results show that boron is adsorbed by soil, and that leaching of boron from treated wood in ground contact, even after 5 days exposed to severe rainfall conditions, is less than 10% of the boron in the wood before exposure.
E F Baines, S J Davis


Risk assessment and the approval of wood preservatives in the United Kingdom
1995 - IRG/WP 95-50040-23
An approval system operates in the United Kingdom (UK) for the regulation of wood preservatives. The regulatory authority uses a risk assessment approach to evaluate how far the potential for harm to people and the environment from wood preservatives is likely to be realised in practise, and hence the controls required for products to be, used safely. The evaluation for approval purposes also takes into account the effectiveness of wood preservatives. A tiered approach is adopted to data requirements, and likely exposures are considered under the proposed conditions of use so that testing is minimised and controls are commensurate with risk.
R M Turner


Programme Section 2 Test methodology and assessment
1999 - IRG/WP 99-20180
IRG Secretariat


Questionnaire concerning assessment of test data from laboratory and field tests
1992 - IRG/WP 92-2418
During the WG II session in Harrogate, UK it was announced, that possibly a working-session on the assessment of test data and correlation between laboratory and field tests might be organised during next year's meeting in Orlando. For that pupose a questionnaire was prepared. The valuable comments and input of Prof. Thomas Nilsson from Sweden is hereby greatly acknowledged.
A R Valcke


The Biocidal Products Directive ( 98/8/EC ) - its consequences for the wood preservation industry
2001 - IRG/WP 01-50166-04
1. The Current Position This European Union Directive is one of the most technically complex pieces of legislation that has been developed by the European Commission (EC). Although the Directive was to have been implemented in the legislation of individual Member States of the EU by May 2000 progress has been slow. A number of Member States have yet to declare the Competent Authority who will handle their legislation. The body text of the Directive cannot stand-alone and is dependent on ancillary regulations and the development of technical guidance for both the Competent Authorities in the Member States and also industry to understand their roles in the whole process for the regulation of biocides and the biocidal products containing them. The process is far from complete in terms of a piece of workable legislation and this leaves not only industry but also the Competent Authorities with significant areas of uncertainty. This is potentially economically and socially damaging to the marketing and use of biocides and biocidal products. Because of this evolutionary process this paper can only be written in general terms as by the time the symposium takes place some significant changes to the position at the time of writing may have occurred. 2. Background The Biocidal Products Directive (98/8/EC), (BPD), is a directive which requires that biocides ( as active substances) are approved for use within the EU and the individual biocidal products containing these active substances are approved for use by the Competent Authority(s) of the Member State(s) in which it is intended to market the product. The product authorisation obtained in the first Member State should be mutually recognised by the other Member States in which application for authorisation to place the product on the market is sought. The Directive has to be seen in the context various other Directives, notably the Plant Protection Directive 91/414/EC). Biocidal products are grouped in the directive into twenty three "product types" and wood preservatives are Product Type 8. The intention of the directive is to harmonise the requirements for the placing of biocidal products and active ingredients on the market throughout the EU. EU wide use of so-called Common Principles are intended to be used to assess the dossiers in order to achieve a common approach and eliminate the current situation where individual Member States apply their own particular national approaches and criteria in the assessment and regulation of products . Annex IIA of the directive identifies the data requirements for the active substance and Annex II B for the biocidal product. There are additional data requirements identified in Annexes IIIA and IIIB for each product type reflecting potential for exposure to man and the environment. 3. Entry onto Annex I Any new active substance will require approval before it or any biocidal products including it can be placed on the market. The dossier to be submitted to the EC will have to include additional data and risk assessments for the product types (as defined in the BPD) in which it will be intended to be used. For those active substances that are accepted as being existing substances on the market before May 2000 (say in wood preservatives) these will be ranked and prioritised. This process is being defined in the so-called: Review Regulations. 4. An environmental directive There is no doubt that this Directive has a high environmental content in terms of the data and the associated risk assessments which are to be prepared. The protocols and the end points for some of these data requirements are still being developed. In general the EC considers that modelling exposure using human and environmental exposure scenarios covering the end use of the product is an acceptable approach . Data are required to enable these scenarios to be modelled and risk assessments made. It is necessary that regulators do not make decisions based on hazard assessment alone in the absence of fully worked out and agreed emission scenarios to define exposure levels which generate a realistic worst case risk assessment. Risk is a function of both hazard and exposure. A lot of work has been done in the development of Technical Notes for Guidance intended to help the regulator and the applicant in the submission and the interpretation of the data. Whilst it may be the case that the human toxicity data requirements still leave questions to be answered it is in the environmental aspects part of the regulatory process where there is still much work to be done. The Directive would seem to rely heavily on the development of Pass / Fail criteria in simulation tests. This is a big subject and of key importance to the risk assessment. 5. Wood preservatives ---- a test case Wood preservation has achieved a certain reputation. On the one hand it is said that a prime reason for the development of the Biocidal Products Directive arose from European problems in the regulation of the marketing and use of dangerous substances, notably wood preservatives. On the other hand because wood preservatives have been regulated by a number of Member States for many years it is believed they are well understood. The EC and the Member States also wanted to be seen to have achieved early success in the implementation of the Directive therefore the decision was taken to start, following failings with the speed of progress of the Plant Protection Products Directive, with a product type they knew all about i.e. wood preservatives. There is no doubt that there is a much greater understanding on the exposure scenarios, both human and environmental, for wood preservatives than many other product types. However, would it not have been better to have tackled some of the other product types where such an understanding is much less well developed? It is regrettable that the EC and Member States did not feel able to accept the results of an EC sponsored study (Haskoning report) on the assessment of risks for all the product types covered under the BPD. The results of this study clearly showed that wood preservatives did not constitute the most significant risk to man or the environment and in fact the risk was significantly greater for other product types. 6. Wood preservatives and the OECD Biocides Programme Another speaker will be covering this subject in more detail. Suffice it to say that because of the perception there was good knowledge about wood preservatives again they were selected as the pilot for an OECD project looking at environmental and human exposure assessment under the OECD Biocides Programme. The findings from two OECD Workshops actually demonstrated there was still much to be learnt about wood preservatives in order to refine the risk assessments to a state where they would be sufficient for the requirements of the BPD. This work is ongoing but it clearly demonstrates the problems that both the regulator and industry will have in the preparation and the assessment of the dossiers for both the active substances and the biocidal products. This is especially the case for other biocidal products that have not been subject to the same kind of regulation that wood preservatives have subjected to in the past. 7. Inorganic and organic biocides With current wood preservation technology there is still a dependence on inorganic chemicals such as copper (in conjunction with other biocides) or with chromium, as well as arsenic and boron for many end use applications. This is very much the case where a long term service life is a key factor in the use of treated wood for that end use. These substances are commodity chemicals and are also covered under the Existing Substances Regulations (EC) 1488/94. There is also work going on revising the Technical Notes for Guidance covering them . This includes a significant addition in the environmental risk assessment area. Efforts are being made to integrate and coordinate the requirements for both the BPD and the Existing Substances Regulations and OSPAR ( OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic). OSPAR refers to the Oslo Paris Convention. Whilst the BPD seems primarily aimed at the regulation of biocides based on organic chemicals wood preservative products may contain both inorganic and organic components. Indeed there are probably few wood preservative formulations on the market that contain only one active substance. This must have a significant impact on the way the dossiers are prepared for the active substance and the biocidal products and how they are assessed both at the EC and the Member State level. 8. Consequences of the BPD for the wood preservation industry Whilst this paper addresses the consequences for the wood preservation industry per se, it must not be overlooked that there may be implications for the fabricaÈors of articles made from treated timber. Some current wood preservative formulations may over a period of time be withdrawn from the market because the risks and costs of generating the data and the preparation of the dossier make the product economically unviable. The presence of large working volumes of wood preservative solutions at treatment plants requires realistic withdrawal periods to avoid the unnecessary disposal and associated environmental risk of products that have been used satisfactorily for many years. 9. Availability of active substances The structure of the industry has changed dramatically in the past few months and there is no doubt that other changes both within and outside the wood preservation industry itself are yet to happen. The original differentiation between formulator of wood preservatives and active substance suppliers to the wood preservation industry has become blurred. Some of the active substances used in wood preservation are used in other either other biocidal product types or in products regulated under another directive, e.g. Plant Protection Products Directive 91/414/EC. 10. Data protection This continues to be a key issue for industry and some companies may find it strategically or financially necessary not to support an active substance in a particular product type thus leaving that sector without being able to use the active substance. The coming months will start to reveal which active substances are likely to be supported, at least through the notification process. Formulators are therefore in a close dialogue with their suppliers to try to determine their intentions on whether or not they intend to support their active substance. Today's wood preservative formulations are largely multi active substance based. Product costs, efficacy spectra, niche marketing and other considerations have made this process inevitable. New wood preservative formulations take time to research and develop and the continuity of availability of a choice of active substances is of key importance. A lack of adequate return on investment necessary to sustain the development of new products could have a negative impact on innovation and the rate of introduction of new products. It is extremely unlikely that any new active substance will be solely developed for use in wood preservation. This would be an effect contrary to expectations of the EC. The situation with wood preservatives is complicated by the fact that treated wood is a construction product and comes under the scope of the Construction Products Directive (89/106/EEC) (CPD). Products under the scope of the CPD are required to meet certain so-called essential requirements and one of these is durability. Demonstration of compliance involves the extensive suite of CEN wood preservative efficacy tests. Even relatively small changes in formulations may require extensive re-testing under the EN 599 regime in some Member States. 11. Task Forces Companies are encouraged by the EC to enter into Task Forces in order to reduce the burden of testing on animals and also to reduce the number of dossiers to be reviewed for each active substance. Ideally, and understandably, the EC would like one dossier per active substance. Parts of the wood preservation industry have been co-operating in Task Forces and much practical experience has been gained. Even closer co-operation will be required and this will enable companies to pool experience and expertise and manage their financial exposure to potentially high regulatory costs by sharing them amongst a larger number of parties. 12. Financial aspects Industry will have to make some best guesses with respect to its investment programmes for supporting its portfolio of products. Formulators and active substance suppliers are likely to group into Task Forces in order to reduce their costs in terms of data generation and the fees likely to be charged at the EU and the Member State level for the assessment of the dossiers. The compilation of the dossiers requires specialist expertise to assist the industrial applicant(s). This is likely to cost in the order of £100,000 per active substance, not including the costs of generating any data. The Rapporteur State's costs for reviewing the dossier is also expected to be of the same order. Clearly these kinds of costs will impact on innovation. An adequate payback must be available to the company to justify this level of investment. 13. Will mutual recognition work? Member States are required to recognise the authorisation of the biocidal product placed on the market in the first Member State when subsequent applications are made to place the product on the market. This is a fundamental principle of the BPD, although there is concern that Member States continue to have enough flexibility to prevent this happening if there are particular concerns in that Member State. Industry very much hopes this will not be the case and that mutual recognition, a fundamental principle of the BPD, will work in practice. 14. Environmental aspects Biocidal products such as wood preservatives are generally applied in controlled situations and not over large areas. Consequently any emissions can be considered to be from discreet sources, such as treated timber or potentially from timber treatment plants. This is in contrast to plant protection products and some other biocidal products that are usually dispersed over a relatively large area. Because of this a lot of work is required to be done to re evaluate how the environmental aspects of biocidal products such as wood preservatives can be assessed in an objective manner. The criteria that define an emission and how the PEC (Predicted Environmental Concentration) for each environmental compartment is determined are critical. The wood preservation industry, through the EWPM (European Wood Preservative Manufacturers Group), has been working with institutes and other interested parties in a co-operation known as the EFG (Environment Focus Group) to progress the development of appropriate methodology. Data will be required for both primary and secondary exposure to treated timber. The protocols for this work are yet to be agreed. This work is being further progressed in the OECD together with input from CEN TC 38 WG27. This co-operation between the OECD and CEN is extremely significant in that it is, I believe, the first time such a co-operation has taken place in the development of an OECD Guideline. If one considers all of the end uses where treated timber may be found carrying out a risk assessment with few guidelines on how it should be done is a very uncertain process for both industry and the regulator. Reliance on so-called expert opinion may be inadequate. 15. Comparative assessment (the substitution principle) This is a process whereby the health safety and environmental properties of acti_u101 ? substances used in the same product type could be compared and those with the most undesirable properties would not be placed on Annex I. Consequently biocidal products containing them would have to be removed from the market. This process is embodied in the BPD but it was initially considered that it would only be applied in the event of problems arising with active substances or products containing them rather than being used as a screening tool early on in the review process for active substances. This area is still an uncertain one with Member States having different interpretations of this principle. It is unfortunate that the wood preservation industry could be used to test out this concept at a European level. The consequences of this principle could be further losses of active substances available to the wood preservative formulators. 16. Substances of concern The BPD is not only concerned with the active substances that are formulated into the biocidal product but also with so-called "substances of concern". These are defined as any substance, other than the active substance, which has the inherent capacity to cause an adverse effect on humans, animals or the environment and is present or is produced in a biocidal product in sufficient concentration to create such an effect. There are significant implications for the formulator of the biocidal product . The formulator may have to submit an extensive dossier containing toxicological and metabolic as well as ecological data on each of the substances of concern when seeking approval for the biocidal product. There may be classes of compounds that become unavailable to the formulator either because of the risks posed by the co-formulant or because the cost of generating data will be uneconomic. 17. The wood preservation Industry's view on the BPD Industry has supported the development of the BPD since its conception in 1989. It is still supportive it but believes that the degree of complexity is disproportionate to the level of risk when it comes to wood preservatives. After all wood preservatives have been regulated for a long time and in reality there have been few significant health safety and environmental problems associated with them. Industry believes there is no need to determine an absolute understanding about a biocide and its application but rather there is a need to determine the level of understanding that will enable characterisation so that a risk assessment can be made. The wood preservation industry has sought either directly or through representative bodies a pro-active and collaborative approach with the regulators although at times this appears to have encouraged inappropriate demands. The regulators have invariably responded positively to this however they may not always understand the burden in both time and resource in having made wood preservatives the test case. Industry hopes that its efforts to be pro-active will be recognised and will be dealt with equitably when considered before the other product types defined in the Biocidal Products Directive.
D Aston


Assessment of wood preservation facilities in Canada
1989 - IRG/WP 3557
This document sets out an assessment procedure for the current status of the wood preservation industry in Canada in relation to the Technical Recommendations (TR) documents for the Design and Operation of Wood Preservation Facilities published by the Government of Canada in April 1988. A questionnaire has been prepared in consultation with industry and the Canadian Institute of Treated Wood. An assessment report (state-of-the-art) will be prepared on the basis of the information provided in these questionnaires and discussions.
G Das, V N P Mathur


Next Page