IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 203 documents. Displaying 25 entries per page.


Field trial with poles of Scots pine treated with six different creosotes
1996 - IRG/WP 96-30115
In the middle of the 50's field trials with creosote-treated poles were started in France, Germany and Sweden. The trials were initiated by WEI (Western-European Institute for Wood Preservation). Six different creosotes were used and 40 poles per creosote were installed at each test field. Results after 39 years of exposure in Simlangsdalen, Sweden are reported. Poles treated with a heavy creosote were less decayed than poles treated with medium-heavy creosotes. Poles treated with a light creosote were most decayed.
Ö Bergman


Biological screening assays of wood samples treated with creosote plus chemical additives exposed to Limnoria tripunctata
1980 - IRG/WP 408
Laboratory methods for exposure of treated wood coupons to Limnoria tripunctata are described. Chemical additions to creosote were screened using this method. Three pesticides, Endrin, Kepone, and Malathion proved particularly effective. The addition of varying percentages of naphthalene to creosote using several treatment methods are currently being assayed. Results to date show that the coupons treated by the empty cell method have better performance than those prepared by the toluene dilution method. The naphthalene coupons treated by the full cell method show no attack after six months' exposure.
B R Richards, D A Webb


Fire resistance of preservative treated fence posts
1994 - IRG/WP 94-30033
Pine fence posts were pressure treated separately with CCA-C, CCA-wax, CCA-oil and creosote. Treated posts and untreated controls were planted in the ground in a randomised block design, weathered for six months and then subjected to a controlled burning test using two fuel loads. Creosote treatment increased the time that posts were alight whereas CCA treatment had no such effect. However, CCA treated posts smouldered until destruction of the majority of the posts occurred. Posts treated with CCA-oil took longer for destruction to occur than posts treated with CCA-C or CCA-wax. Creosote treated posts and untreated controls did not show prolonged smouldering and consequently were not destroyed by the burning test, although their strength was reduced. A high fuel load increased the time that posts were alight and smouldering, and for CCA treated posts decreased their time to destruction.
P D Evans, P J Beutel, C F Donnelly, R B Cunningham


Performance of treated fence posts after 6 years in five test plots in the State of Sao Paulo - Brazil
1976 - IRG/WP 376
Fence posts treated with creosote, pentachlorophenol and creosote/ pentachlorophenol mixtures showed good performance after 6 years of exposure in five test plots located in the State of Sao Paulo - Brazil. Good results were also achieved with copper sulphate/sodium arsenate and copper sulphate/potassium dichromate mixtures. Fungi and termites were the main destroying agents found attacking the posts.
M S Cavalcante


Pinus and Eucalyptus fenceposts treated with creosote and solvex tar by hot and cold open-tank process
1987 - IRG/WP 3455
A comparative study of the behaviour of two different wood preservatives, creosote and solvex-tar, was made, using two wood species, Pinus pinaster Ait and Eucalyptus globulus Labill, by the hot and cold open-tank process. Results showed that the creosote behaved better in relation with the uniformity of its distribution in wood. On the other hand, better results were obtained on Pinus for both preservatives.
M V Baonza Merino


Results of chemical analyses in the field of wood preservation in the Bundesanstalt für Materialprüfung
1973 - IRG/WP 321
The results of qualitative and quantitative chemical analyses of wood preservatives are often the basis for evaluating the various works in the field of wood preservation. In the past 10 to 15 years a number of such works was carried out in the Bundesanstalt fur Materialprüfung, Berlin-Dahlem, dealing with the identification and effectiveness of wood preservatives and with methods of wood preservation. Fundamental realisations were made which will be summarised below. It seems advisable to differentiate between inorganic and organic chemical wood preservatives and methods of analyses. These are two distinct fields which differ also with regard to the analytical techniques applied.
H J Petrowitz


A case study on quality control on telephone poles as a cost saving tool in Tanzania
1987 - IRG/WP 3418
A sample of 28 CCA treated Eucalyptus poles from a lot of 2,000 poles awaiting delivery to the field, was studied to reveal the quality of treatment. Results showed a product of very poor quality. Average figures for penetration and retention were 8.4 mm and 2.2 kg/m³; these results are 66% and 91% below the required standards, respectively. Consequences of such results are estimated to amount to losses of billion of shillings.
K K Murira


Results of stake tests on wood preservatives (Progress report to 1974)
1975 - IRG/WP 361
A number of field stake trials on preservative-treated wood have been carried out at Princes Risborough Laboratory from 1928 to the present day, and many of the tests still continue. This paper presents in detail the results obtained to date, covering about 15 000 individual test stakes exposed over the period.
D F Purslow


Evaluation of new creosote formulations after extended exposures in fungal cellar tests and field plot tests
2000 - IRG/WP 00-30228
Although creosote, or coal tar creosote, has been the choice of preservative treatment for the railroad industry since the 1920s, exuding or "bleeding" on the surface of creosote-treated products has been one incentive for further enhancements in creosote production and utility (Crawford et al., 2000). To minimize this exuding problem, laboratories such as Koppers Industries Inc., USA, and Commonwealth Scientific and Industrial Research Organization (CSIRO), Division of Chemical and Wood Technology, Melbourne, Australia, have developed changes in processing of coal tar that produce distillates with fewer contaminants. This "clean distillate" is then used to formulate "clean creosote" as a preservative. These new, unique creosote formulations are being investigated as part of a program to enhance the use of regionally important wood species in the United States. Four retention levels of each of two new creosote formulations creosote, one pigment-emulsified creosote (PEC) and one creosote formulation that meets the AWPA Standard C2-95 for P1/P13 creosote (AWPA, 1995a), were applied to two softwood species and two hardwood species. Two laboratory procedures, the soil-block and fungal cellar tests (accelerated field simulator), were used to evaluate the four creosote formulations. These procedures characterized the effectiveness of the wood preservatives. The soil-block tests were used to determine the minimum threshold level of the preservative necessary to inhibit decay by pure cultures of decay fungi. In general, the soil block tests showed there was little difference in the ability of the four creosote formulations to prevent decay at the three highest retention levels as summarized in a previous report by Crawford and DeGroot (1996). The soil-block tests will not be discussed in this report. Fungal cellar tests expose treated wood to mixtures of soil-borne fungi that promote accelerated attack. Crawford and DeGroot (1996) discussed the evaluation of the creosote formulations after 17 months of exposure in the USDA Forest Service, Forest Products Laboratory (FPL), fungal cellar. At that point in time data from the fungal cellar tests showed that softwoods are protected better than hardwoods for all four formulations of creosote tested. This report will discuss exposure of the fungal cellar stakes upto 36 months. In addition, field stake tests are being used to verify service life of the new creosote formulations in vivo. Results from accelerated tests are indicative of field performance, but the correlation between laboratory and field results is still being investigated. Field stake tests are regarded as critical, long-term evaluations that provide results most directly related to the performance of treated products in service. In this study, we report on the performance of the creosote formulations after five years of exposure in field tests.
D M Crawford, P K Lebow, R C De Groot


Electrodialytic remediation of creosote and CCA treated timber wastes
2002 - IRG/WP 02-50190
There is a growing concern about the environmental issue of impregnated timber waste management, since an increase in the amount of waste of treated wood is expected over the next decades. Presently, no well-documented treatment technique is yet available for this type of waste. Alternative options concerning the disposal of treated wood are becoming more attractive to study, especially the ones that may promote its re-use. Inside this approach, the electrodialytic process (ED) seems a promising technique for removal of preservative chemicals from treated wood waste. The method uses a direct electric current and its effects in the matrix as the “cleaning agent”, combining the electrokinetic movement (mainly due to electromigration, but also electro-osmosis and electrophoresis), with the principle of electrodialysis. This work reports results from the application of the electrodialytic process to an out-of-service Portuguese creosote and CCA-treated Pinus pinaster Ait. railway sleeper and pole. The behaviour of the process is described and the main results discussed. The average removal rate, estimated in accordance with prEN 12490, for creosote from treated timber waste was around 40 %.. For CCA treated timber waste, experimental conditions that could optimise the process efficiency (e.g. current density, time) were studied. The highest removal rates obtained until now, in our studies, were 93 % of Cu, 95 % of Cr and 99 % of As for sawdust using 2.5 % oxalic acid (w/w) as the assisting agent. For CCA treated wood waste in the form of chips, the best removal rates obtained until now were 84 % of Cu, 91 % of Cr and 97 % of As.
E P Mateus, A B Ribeiro, L Ottosen


Extending the useful life of creosoted electricity distribution poles in service
1993 - IRG/WP 93-50001-16
Creosoted transmission poles have provided good service over many decades in a whole range of environments. The use of save biocides for secondary treatments has the potential to extend the life of such poles. These techniques, together with a full understanding of the modes of failure, make it possible to establish new strategies to further improve the environmental benefits of treated wooden poles.
D J Dickinson, B Calver


Creosoted radiata pine by non-pressure methods
1988 - IRG/WP 3486
Posts of Pinus radiata have been impregnated with creosote by immersion for 1, 3, and 7 days, and by hot-and-cold open tank with hot bath temperatures at 40°C and 60°C. On the basis of the retention rates obtained, suitable procedures are described for wood elements that are going to be in ground contact, and an analysis is made of the way in which the variables tested affect the results.
M V Baonza Merino, C De Arana Moncada


Long-term effectiveness of fumigants in controlling decay in Douglas fir waterfront timbers
1986 - IRG/WP 3364
The persistence, movement, and effectiveness of chloropicrin and Vapam (sodium N-methyl dithiocarbamate) in large, horizontal Douglas fir timbers were evaluated 7 years after fumigation. Chloropicrin prevented reestablishment of decay fungi; reinvasion occurred in some Vapam-treated timbers. Residual fungistatic effect was detected up to 1.2 m from the fumigation site in chloropicrintreated timbers but not in Vapam-treated timbers.
T L Highley


Possible regulatory status of treated wood waste and implications
1998 - IRG/WP 98-50101-07
In relation to the European Community or the French regulations, treated wood waste can get two different regulatory status: <<recycled product or fuel>> or <<waste>>. Then, into the waste status, two categories are possible for these residues: <<domestic waste and assimilated>> or <<hazardous waste>>. These different status and categories are important for the environmental issue of treated wood waste management. But they also can have strong economical implications, linked to the waste management cost on one hand and on the materials image on the other hand. On the basis of the EC regulations, up to now, no treated wood waste is namely quoted as <<hazardous waste>>. However, through the classification criteria defined by different EC directives, creosote or heavy metals treated wood waste could be to considered that way. The technical arguments for such a classification and the practical implications are discussed.
G Deroubaix


Inspection results of preservative treated stakes, maximum 33 years in field
1992 - IRG/WP 92-3690
Since in 1958, we have undertaken field experiments in Japan. For these field experiments, we used sapwoods of Japanese cedar called Sugi (Cryptomeria japonica) because of majority of plantation forest soft wood species in Japan. For some preservatives, we added sapwood of Japanese beech called Buna (Fagus crenata), a main Japanese hard wood species. Dimensions of these specimens were 30 x 30 x 600 mm³ (T x R x L). About 30 preservatives mainly water born but 20% of oil born preservatives included, were examined for this test. We checked the damage rating every year by the observation. The service life of the preservative treated stakes were estimated at the period when the average damage rating of stakes were reached beyond 2.5 . Creosote oil, creosote oil mixed heavy oil (75:25 and 50:50) and creosote oil mixed coal tar (75:25 and 50:50) are still sound conditions for 33 years. CCA (JIS K 1554 Type 1) 2% and Tancas C 2% are still sound conditions for 28 years. Because of soft rot, the treated Buna specimens were shorten as ones of treated Sugi.
K Suzuki, K Yamamoto, M Inoue, S Matsuoka


Exposure trial at tropical marine sites of pyrethroid/creosote mixtures as wood preservatives: Preliminary results
1989 - IRG/WP 4155
Pinus sylvestris sapwood blocks measuring 25 x 25 x 200 mm³, impregnated using a Lowry or Rüping pressure treatment cycle with solutions of permethrin, cypermethrin or deltamethrin in BS144 creosote, have been exposed at marine sites in Australia, Papua New Guinea, the U.K. and Singapore. The effectiveness of these solutions in preventing marine borer attack is being compared with the efficacy of creosote alone, creosote/CCA double treatment, pyrethroids alone and no treatment. Blocks at the tropical sites have been installed in the intertidal zone in areas where the crustacean borer, Sphaeroma is active. Teredinids (shipworms) of several species are very numerous at these sites and the bivalve borer, Martesia, is present. Limnona colonies were found in untreated blocks at the sites in Papua New Guinea and Australia. The results of inspections after exposure periods of up to 26 months at the tropical sites are summarised in this report. Untreated sample blocks failed rapidly to borers, particularly teredinids. Pyrethroids alone reduced the level of crustacean borer attack and to a lesser extent, teredinid attack. All blocks treated with creosote-containing solutions have so far not been attacked by borers or degraded significantly by micro-organisms. Soft-rot and bacterial degradation occurred in untreated blocks and blocks treated with pyrethroids alone. Settlement by barnacles and serpulid worms appears to be inhibited by the creosote/CCA double treatment, but there is no evidence of long-term inhibition of barnacle or serpulid settlement by pyrethroid-containing solutions, whether with creosote or without. Samples at the site in the UK are exposed to teredinid attack. No inspections have yet been carried out at this site.
S M Cragg


Microbial biofouling of 10-40% naphthalene in creosote treated and untreated wooden pilings in the marine environment
1978 - IRG/WP 442
R R Colwell, P L Fish, D A Webb, A J Emery


Report of meetings of remedial treatments Sub-group held in Madrid, Spain during 27-28 April 1988
1988 - IRG/WP 3502
J N R Ruddick


Addendum to Document No: IRG/WP/428
1977 - IRG/WP 437
A J Emery


Performance of untreated French Guianan piling in marine exposure
1992 - IRG/WP 92-4173
Round piling of seven French Guianan species, greenheart, and preservativ-treated Southern Pine were installed as fender piling in Key West, FL. After 12½ years, none of the tropical hardwoods performed as well as dual-treated Southern Pine. Of the hardwoods, kouata patou and maho noir were the most resistant to decay and marine borers.
B R Johnson


Biological control of decay in standing creosote-treated poles
1976 - IRG/WP 156
Internal decay caused by basidiomycetes in standing creosoted poles can be controlled biologically, it seems, by artificial inoculation near the ground line. For such inoculation IC-type facultative mycoparasites, Scytalidium sp FY strain or Trichoderma spp for example, may be used. Apparent residual action can be explained by the release of non water soluble chemically stable antibiotics from the growing hyphae of the artificially planted micro-organism.
J Ricard


Conforming to european standards for preservative-treated timber: Specifying with confidence
2000 - IRG/WP 00-20194
A four-year collaborative study between four industrial partners and BRE has assessed timber treated by current UK industrial practices in the light of current European Standards. Data were collected for CCA and creosote treated timber components, and compared with the requirements laid out in EN351-1 and -2. A number of difficulties were encountered that have been described in previous IRG papers (98-20150, 99-20156), such as the poor reproducibility of chemical analyses and variable timber density. This paper describes the conclusions of our collaboration, focusing on the application of the findings and how to overcome any difficulties encountered. The data collected allowed the calculation of figures that have been submitted for inclusion into the UK&apos;s proposed national code for preservative-treated timber (DD239). An example is the recommendation of new minimum retention figures for creosote-treated commodities. This paper describes the factors that will enable UK specifiers to use the European Standards with confidence and greater understanding of how they map onto traditional methods of specification. In addition valuable lessons have been learnt applicable to the industry world wide.
E D Suttie, R J Orsler


Japanese wood preserving industry
1990 - IRG/WP 3596
Although a great amount of wood is in use in Japan, a little attention has been paid to the significance and importance of wood preservation. The fact reflects that only less than 0.5% of the total wood consumption is treated with wood preservatives today in the country. Over the 20 years before 1970, the annual volume of preservative treated (pressure treatment) wood was relatively at a stable level of approximately 500,000 m³. After the prominent peak of 709,000 m³ in 1968, 500,000 to 600,000 m³ of wood had been annually treated until 1980. In the 1980&apos;s the pace of production of preservative-treated wood gradually declined, down to 400,000 m³ in 1988. As for commodities treated with wood preservatives, poles and sleepers have been remarkably decreasing, and wood foundation sills which newly appeared on the market in the late 1960&apos;s became a major item. It is expected that new treated commodities will be accepted among Japanese people to stimulate the activity of wood preserving industry in Japan.
K Tsunoda


Scientific development for prolonging the service life of timbers by impregnating with creosote or organic solvent type preservatives in which additive has been incorporated
1977 - IRG/WP 382
Chemically impregnated wood has played a prominent part in the Telephone and Electricity Distribution Industry during the past century and there is no doubt that it will play an equally prominent part in the future. The reasons why wood poles and wooden, structures predominate, are that when adequately chemically impregnated with a recognised timber preservative to ensure the expected service life for the purpose envisaged, the timber is then fully protected against the ravages of wood destructive organisms. Furthermore, wood is endowed with many natural characteristics that make it a favourite pole and structural material. Its high strength, light weight, ability to absorb impact or shock from loads suddenly applied and ability to resist overloading for brief periods plus its well-known insulating qualities - all are important basic reasons for its predominance in pole line structure. The use of chemically impregnated timber often makes it possible to carry out a given construction programme at less cost, or to erect more structures for a given sum of money, than when more expensive construction materials are employed.
P R B D De Bruin


Changes in the degree of decay of lignocellulosic substrate used in a screening test of fungicidal wood preservatives
1977 - IRG/WP 287
This report contains results of investigations aimed at: a) determination of the effect of the kind of substrate and species of test fungus on quantitative changes in used samples prepared from spruce cardboard, and b) comparison of the threshold fungicidal values of come fungicides determined with accelerated method, with values obtained by block method. During performed investigations, the method described in Document No.: IRG/WP/262 was used. Assesment of decomposition degree was based on the loss of weight and amount of NaOH consumption by the substrate.
K Lutomski


Next Page