Your search resulted in 142 documents. Displaying 25 entries per page.
New wood-modification process based on grafted urethane groups: Durability of carbamamylated Scots pine (Pinus sylvestris L.) wood
2023 - IRG/WP 23-40974
Substituting commonly used toxic preservatives with wood modification treatments can make the wood material less prone to water and moisture uptake. This approach favours a more sustainable protection of wood against biodegradation. In this study, Scots pine sapwood was full-cell impregnated with an aqueous solution of urea (30%), dried at 40°C for 24h, and subsequently heat-treated at 150°C for...
C-F Lin, O Myronycheva, O Karlsson, D Jones, D Sandberg
UV protection and dimensional stability of lignin-based wood treatments
2023 - IRG/WP 23-40979
New developments in the field of wood modification aim to enhance the intrinsic properties of natural timber. The limitation of wood should be preferably achieved with biobased ingredients and efficient, eco-friendly treatments possessing low environmental impact. Consequently, new solutions assuring expected properties and functionality over elongated service life and reducing the risk of product...
R Herrera,O Gordobil, F Poohphajai, A Sandak
Investigation on the use of whey ultrafiltration permeate as a biosourced agent of wood protection
2024 - IRG/WP 24-20718
The ever-growing demand for sustainable materials has driven research toward innovative strategies in both the fields of material science and environmental management. Wood is a natural composite that is attracting more and more attention due to its high physical strength, great machinability, aesthetic appeal, and low price as a renewable and biodegradable resource. It has a long-standing history...
A Keralta, J Winninger, J Chamberland, V Landry
Properties of thermal modified wood of Pinus pinaster, Pinus radiata and Pinus sylvestris from Galicia, Spain
2024 - IRG/WP 24-30800
This paper provides the results of a research about the properties of thermal modified wood of maritime pine (Pinus pinaster Ait.), radiata pine (Pinus radiata D. Don) and Scots pine (Pinus sylvestris L.) from Galicia, Spain, thermal treated in the industrial vacuum-heat autoclave plant of FINSA group in Galicia, Spain. These three pine wood species are used in different solid products but due the...
D Lorenzo, J Benito, J Arancon, J Crespo
Citric acid and sorbitol treatment: A comparative study of Canadian and Norwegian species
2024 - IRG/WP 24-30806
Dimensional instability can reduce the competitiveness of wood in exterior applications such as cladding and decking. The objective of this work was to evaluate the dimensional stability of permeable and refractory softwoods from Europe and North America modified via a sorbitol and citric acid treatment. White spruce and Norwegian spruce, refractory species, and jack pine and Scots pine, relativel...
D Schorr, Erik Larnøy, R Stirling, G Boivin
Manufacturing of bamboo hybrids with high strength, superior fire retardancy, and dimensional stability
2024 - IRG/WP 24-30808
Bamboo, renowned for its rapid growth, high strength-to-weight ratio, and eco-friendly attributes, has found extensive use in decorative building materials and glue-laminated beams. However, the inherent challenges of dimensional instability and flammability in natural bamboo restrict its broad application. This research introduces a range of environmentally friendly techniques aimed at producing ...
W He, Rui Wang, W Li, G Hu, T Singh, Q Fu
A novel treatment for increasing UV stabuility of wood based on citric acid and urea
2024 - IRG/WP 24-30811
Wood, a fundamental material in the Built Environment, faces challenges related to durability and weathering, notably UV degradation leading to colour changes. This study explored a novel treatment method utilising citric acid and urea to enhance the UV stability of wood. The reaction between these compounds forms fluorescent species and insoluble nanoparticles upon thermal treatment. Two treatmen...
S Jué, A Scharf, C-F Lin, R Moutou Pitti, D Sandberg, D Jones
Synthetic Oxalate/ß-glucan Fungal Extracellular Matrix Demonstrates Potential Inhibition of Extracellular Enzyme Diffusion into Wood Cell Walls, and Calls into Question the Role of Enzymes in Wood Decay
2025 - IRG/WP 25-11053
ß-glucan is the major component of the extracellular matrix (ECM) of many fungi, including wood degrading fungi. Many of these species also secrete oxalate into the ECM. Our research demonstrates that ß-glucan forms a novel, previously unreported, hydrogel at room temperature with oxalate. This finding better explains the gel-like nature of the fungal ECM. Oxalate, at relatively low levels, was ...
B Goodell, G A Tompsett, G Perez-Gonzalez, K Mastalerz, M Timko
Enzyme activities of Bursaphlenchus xylophilus and associated bacteria
2025 - IRG/WP 25-11057
Bursaphelenchus xylophilus or the pine wood nematode (PWN) is the causal agent of pine wilt disease, a destructive disease that affects coniferous masses. B. xylophilus causes severe economic, environmental, and social damage. The establishment of the disease depends on the ability of the PWN to degrade the lignocellulolytic material. Therefore, the study of enzymes able to hydrolyze these compone...
L Robertson, G Cebrián, D Gámez, L Fiorentini, S Rames, S Santos, M T Troya
Multifactorial analysis of the reasons behind wood natural durability
2025 - IRG/WP 25-11065
Physical, chemical and biological properties of several wood species were investigated in order to highlight the main factors involved in wood natural durability and wood characteristic using a principal component analysis. Interaction of wood with water were evaluated using contact angle measurements to determinate wood wettability by water and wood impregnability tests with water allowing to cal...
L-F E Nkogo, M S M Mouendou, S Dumarçay, P E Engonga, F Zannini, E Gelhaye, P Gérardin
Interaction of cellulolytic enzymes with fungal cell wall polysaccharides
2025 - IRG/WP 25-11071
Wood rotting fungi are the primary agents responsible for the decomposition of wood in natural environments. These fungi secrete a variety of enzymes to degrade the chemically and structurally resistant components of the wood cell wall. Some of these enzymes possess a carbohydrate-binding module (CBM), which enhances enzymatic efficiency by increasing their affinity to the substrate. Previously, w...
K Fukabori, N Hattori, Y Kojima, R Iizuka, M Yoshida
Physiological characterization of a key enzyme involved in gaseous COS assimilation in the filamentous fungus Trichoderma harzianum
2025 - IRG/WP 25-11072
Filamentous fungi are among the primary organisms responsible for the biological deterioration of wood, including wood decay and surface contamination. Therefore, understanding their physiological mechanisms is important for developing effective wood preservation strategies. Most physiological studies on filamentous fungi have focused on the metabolism of major elements, such as carbon in the form...
R Iizuka, A Ono, T Suzuki, Y Katayama, M Yoshida
From Wet to Preserved: Collecting Data of Waterlogged Wood Treated with PEG in Lanyan Museum and Study the Effect of Molecular Weight on Dimensional Stability
2025 - IRG/WP 25-11080
Waterlogged archaeological wood are most commonly unearthed in Yilan County, with over one-third originating from the Yilan Agricultural School site. This study aims to analyse the current state of conservation of waterlogged archaeological wood in Yilan County and hopes to properly alleviate the irreversible damage caused to the waterlogged archaeological wood after they leave the water layer. Ho...
K-L Huang, P-Y Kuo
Evaluation of 'Deep Penetration Treatment' for wood preservation
2025 - IRG/WP 25-20746
‘Deep Penetration Treatment’ (DPT) is a recently developed wood preservation technique in Japan designed to meet the preservation standards required for residential foundations. This method involves spraying a specially formulated solvent-borne wood preservative onto properly incised dried lumber. Despite being a non-pressure treatment, DPT achieves penetration levels comparable to conventiona...
M Ikeda, T Shigeyama, Y Sugai
The impact of common fire retardancy salts and minerals on further properties of wood
2025 - IRG/WP 25-30821
Wood has become an increasingly important construction material. To ensure fire safety, fire retardants are widely applied. Recent research focuses on environmentally friendly fire retardants with strong fixation. Phosphate-based salts like diammonium hydrogen phosphate show high fire protection potential but are highly leachable due to their good water solubility. As a newer trend mineralisation ...
T Franke, T Volkmer
Unlocking the Potential of Dairy Coproducts in Wood Modification
2025 - IRG/WP 25-30822
The production of dairy coproducts, such as whey (sweet or acid) and whey ultrafiltration permeate, has significantly increased in response to the rising global cheese consumption. Proteins found in by-products are purified for human nutrition. However, upcycling lactose, which is the major compound of cheese by-products, is more challenging due to the high cost of upcycling processes. Furthermore...
A Keralta, J Karthäuser, J Winninger, J Chamberland, M-J Dumont, V Landry, H Militz
Enhancing strength, fire and biological resistance of wood through structural and chemical modification
2025 - IRG/WP 25-30831
Wood, a renewable and versatile biopolymer, has been a fundamental material to construct traditional and advanced composites for building construction, furniture, transparent composites, and various other applications. Despite its many advantages, including its aesthetic appeal, workability, and relatively low cost, wood possesses inherent limitations such as susceptibility to biological, flame an...
R Abouzeid, M S Koo, Q Wu