IRG Documents Database and Compendium

Search and Download IRG Documents:

Between and , sort by

Displaying your search results

Your search resulted in 256 documents. Displaying 25 entries per page.

Progress report on co-operative research project on L-joint testing
1983 - IRG/WP 2192
A F Bravery, D J Dickinson, M Fougerousse

Proposed method for out-of-ground contact trials of exterior joinery protection systems
1981 - IRG/WP 2157
Methods for testing the efficacy of preservative treatments for exterior joinery are described using the format of a European Standard. Commercially used treatments applied to jointed test units (L-joints) which are then protected by conventional finishes are exposed to normal outdoor hazards out of ground contact. Assessment is made a) by determining eventual failure through decay and b) by destructive examination of replicate treated and untreated units, after increasing time intervals, rating comparative performance in terms of wood permeability increase and the progress of microbial colonisation.
J K Carey, D F Purslow, J G Savory

Wood preservatives: Field tests out of ground contact. Brief survey of principles and methodology
1976 - IRG/WP 269
This paper contains the following spots: 1.: The general need for field tests. 2.: Interests and limits of field tests in ground contact. 3.: Various methods in use for out-of-ground contact field tests. 4.: Fungal cellar tests are they an alternative to above-ground decay exposure tests? 5.: Conclusions.
M Fougerousse

How to Document the Performance of Super-Critical Treated Wood in above Ground Situations?
2005 - IRG/WP 05-20316
The paper presents practical experiences from the preparation of a new preservative treated wood product for introduction to the market. The product in question is Superwood™, which is treated with organic biocides using CO2 in a supercritical state as a solvent. The question is how to evaluate the performance of a new product such as Superwood™ in order to get an acceptance on the market and fulfil the formal requirements. In the European Union countries, the EN 599-1 is the standard that needs to be complied when approving a new product for the market, but it only focuses on the toxic limit against representative decay fungi according to EN 113. However, decay test, above ground and other forms of field tests are optional, this is not in line with the traditional test philosophy in the Scandinavian countries. The open question is to which extent treatment to the level of the toxic threshold value also ensures a long service life and expected performance of the treated commodity. Superwood™ is evaluated using a strategy, in which basic laboratory tests are done to get the toxic value (according to EN 599-1) and in addition a number of field tests are done including accelerated testing in the tropics. These tests are focussed on the evaluation of the performance criteria such as durability and service life and maintenance requirements. These questions must be answered by the producer without having a full record of performance test for their new products. A short status on the test performed on super-critical treated wood (Superwood™) is presented. Based on a comparison between field test in Scandinavia and in the tropical Malaysia a service life of more than 25 years for a specific supercritical treated product is estimated. It is stated that the existing European standardisation system is insufficient when it comes to service life prediction. A number of important questions need to be addressed by the European standardisation system as soon as possible because the market and the public opinion change quickly due to environmental concern.
N Morsing, A H H Wong, F Imsgard, O Henriksen

Field trials of groundline remedial treatments on soft rot attacked CCA treated Eucalyptus poles
1983 - IRG/WP 3222
A total of 17 CCA treated Eucalyptus poles, which were found to contain 2-5 mm of soft rot in October, 1980, were reinspected in October, 1982. In 1980, 11 of the poles were given a supplemental groundline bandage treatment of either Osmoplastic or Patox, while 6 of the poles were designated as untreated controls. Two years after remedial treatment, samples were removed from the poles for microscopic observations and for chemical retention analysis. It was found that the remedial bandage treatments were effective in preventing any further advance of soft rot. Based on the positive results of this study, a treatment efficacy of five years or longer is predicted.
W S McNamara, R J Ziobro, J F Triana

Field tests out of ground contact in France: Definition of the test procedure and preliminary results after 18 months
1981 - IRG/WP 2161
M Fougerousse

A new ground-contact wide-spectrum organic wood preservative: DNBP
1986 - IRG/WP 3358
A new organic wood preservative, which 25 years field tests have proved to be of efficiency and effectiveness comparable to CCA wood preservatives for ground-contact applications, is presented. Physical and chemical tests, supporting the long term field test results as well as indicating the characteristics of this preservative, are also presented.
W E Conradie, A Pizzi

Forest products laboratory methodology for monitoring decay in wood exposed above ground
1995 - IRG/WP 95-20074
Research at the Forest Products Laboratory on the durability of wood in service has included a full complement of laboratory and field tests. In this report, we present a review of past and current methods used to evaluate the condition of preservative-treated wood exposed above ground. Current protocols are described for tests on wood packaging, roofing, and dimension lumber.
R C De Groot, T L Highley

Wood furfurylation process and properties of furfurylated wood
2004 - IRG/WP 04-40289
The first processes for “furfurylation” of wood (wood modification with furfuryl alcohol) were developed several decades ago. Furfuryl alcohol is a renewable chemical since it is derived from furfural, which is produced from hydrolysed biomass waste. Over the last decade modernised processes for furfurylation of wood have been developed. These new processes are based on new catalytic systems and process additives. Two main processes for production of furfurylated wood have been developed for WPT (Wood Polymer Technology ASA) by the authors – Kebony 100 for high modification levels of hardwoods and VisorWood for lower modification levels of pine. Commercial production according to the Kebony process has been running since August 2000, mainly for flooring. A small Kebony production plant is now in operation in Lithuania. A larger Kebony/VisorWood production plant started up in September 2003 in Porsgrunn, Norway. Several new plants operating according to the VisorWood process, each with an annual capacity of 10 000 m³ or more, are under construction. The properties of furfurylated wood depend on the retention of grafted/polymerised furfuryl alcohol (PFA) in the wood. At high modification levels (high retention of PFA) the enhancement of a wide variety of properties are achieved: an exceptional hardness increase, exceptional resistance to microbial decay and insect attack, high resistance to chemical degradation, increase in MOR & MOE, and high dimensional stability. At lower modification levels many property enhancements also occur, however to slightly lower extent. Notable are resistance to microbial decay and insect attack, increase in MOR & MOE, and relatively high dimensional stability.
M Westin, S Lande, M Schneider

Durability of pine modified by 9 different methods
2004 - IRG/WP 04-40288
The decay resistance was studied for pine modified by nine methods of wood modification: 1) Acetylation, 2) Treatment with methylated melamine resin (MMF), 3) Acetylation followed by post-treatment with MMF-resin, 4) Thermal modification, 5) Furfurylation, 6) Maleoylation (using water solution of MG or ethanol solution of maleic anhydride), 7) Succinylation, 8) NMA-modification and 9) modification with reactive linseed oil derivative (UZA), Wood blocks of Scots pine (Pinus sylvestris L.) sapwood were modified in pilot plants. Methods 1-5 were performed by the authors at Chalmers University of Technology or at BFH in Hamburg. Methods 5-9 were part of a European research project (the Chemowood project, FAIR-CT97-3187) and therefore each of these modifications was performed by the project participant responsible for the method. For laboratory testing in TMCs (modified European standard ENV 807) and pure basidiomycete culture bioassays, smaller test specimens were cut from the modified wood blocks. Most of the modification methods were applied on test specimens for marine field testing (EN 275) and some methods to produce mini-stakes for field tests in five Swedish fields. Some modification methods result in modified wood with poor durability, whereas other methods (acetylation, furfurylation and MMF-treatment) seem to provide excellent resistance to microbial decay.
M Westin, A O Rapp, T Nilsson

In-ground performance of two formulations of chlorothalonil after five years of exposure at three test sites in Australia
1996 - IRG/WP 96-30101
Sapwood specimens of Pinus radiata D. Don and Eucalyptus regnans F. Muell. were each treated to three retentions of each of two preservative formulations (chlorothalonil in oil; chlorothalonil plus chlorpyrifos in oil) and installed in-ground at three field test sites in Australia. Specimens were treated with each formulation to achieve 3.2, 6.4 and 12.8 kg/m³ of chlorothalonil a.i. and 3.2 + 0.2, 6.4 + 0.4 and 12.8 + 0.8 kg/m³ of chlorothalonil plus chlorpyrifos a.i. For comparison, specimens of each timber species, treated to a commercial in-ground retention of a copper-chromium-arsenic (CCA) formulation, were also installed. Treated specimens (including controls) have been rated for their condition annually for attack by subterranean termites and fungal decay using a scale ranging from 4 (sound) down to 0 (failed). After five years of exposure, mean termite and decay scores for replicate test specimens at each site reveal that the performance of all three retentions of each formulation, particularly the two highest retentions, is comparable to CCA.
J W Creffield, T L Woods, N Chew

Preventive action against fungal decay: A comparative experiment on the effects of natural and artificial infection of wood by Basidiomycetes
1981 - IRG/WP 2160
M Fougerousse

The isolation of actinomycetes from wood in ground contact and the sea
1980 - IRG/WP 1110
M S Cavalcante, R A Eaton

Field testing of soil insecticides as termiticides
1986 - IRG/WP 1294
This paper reviews field methods used to evaluate soil insecticides as termiticides by the U.S. Department of Agriculture, Forest Service, Gulfport, Mississippi. Field tests are conducted on a minimum of five "nationwide sites" in the United States to determine the efficacy of chemicals in various soil types and against different termite species. Test results of selected insecticides are presented.
R H Beal

Translation of CEN Letter to Mr R Cockcroft dated 24 November 1980
1980 - IRG/WP 2147
G Castan

Soft rot decay of 23 CCA-treated hardwoods from Sabah, Malaysia, in ground contact in Australia
1986 - IRG/WP 1280
The performance against soft rot decay of 23 CCA-treated hardwoods from Sabah, Malaysia, was examined after 20 months in ground contact at Pennant Hills, Australia. The results indicate that between these species soft rot decay is excluded by different levels of CCA salt suggesting that the threshold level for exclusion of soft rot in these hardwoods is a function of anatomical structure/ultrastructure.
R S Johnstone

Short-term field test method with accelerated infection of Basidiomycetes in wood
1981 - IRG/WP 2155
In the ŠIPAD - IRC Wood Protection Laboratory an attempt has been made to develop a simple short-term method for field testing out-of-ground contact wood using accelerated infections with Basidiomycetes. This method makes it possible to obtain a preliminary assessment of a preservative's quality and to estimate the possibility of achieving promising results in more expensive long-term tests. The idea was to use water traps (reservoirs) and 50 x 25 x 15 mm³ laboratory infected pine blocks as the substrate to improve the possibility of inoculation of L-joints.
N Vidovic

An in-ground natural durability field test of Australian timbers and exotic reference species. Part 2: Progress report after approximately 13 years' exposure
1983 - IRG/WP 1189
The condition of heartwood specimens of Australian and exotic timber species after approximately 13 years' in-ground exposure is given. Four of the 5 test sites have a termite hazard in addition to the hazard from a range of decay fungi. Values for specimen life are given only where all replicates of a timber species have become unserviceable. Results give evidence leading to doubt about the accuracy of the tentative durability ratings previously ascribed to at least some of the species under test.
J D Thornton, G C Johnson, I W Saunders

Above ground performance of CCA-treated fingerjointed lumbe
1993 - IRG/WP 93-40003
Studs made from short lengths by finger jointing are becoming more commonly used in North America. Recently Forintek has received enquiries about the performance of such material in a treated form. Treated and untreated nominal 2x4 inch² spruce-pine-fir (SPF) studs exposed above ground for 12 years in southwestern British Columbia were evaluated for evidence of decay. Despite shallow preservative penetration, which did not meet North American standards, the CCA-treated material showed no signs of decay. In contrast two of the 30 untreated samples had failed and the mean rating was 1.3 on a 0 to 4 scale. These results are encouraging for the use of CCA treated SPF as finger jointed or conventional lumber in above ground exposure.
P I Morris, G E Troughton

Performance of surface-treated hardwoods and softwoods out of ground contact
1990 - IRG/WP 3592
A number of fungicides were tested as brush treatments for protection of southern pine, Douglas-fir, maple, and red oak against decay above ground. Cross-brace and L-joint test units were treated just before assembly and exposed from 3-10 years. Untreated Douglas-fir cross-brace units were not decayed at either the Mississippi or Madison, WI, site. Untreated red oak cross-brace units were not decayed at the Madison site. The two hardwood species were more difficult to protect from decay than the softwood species. Decay development in maple cross-brace units was considerably slowed by several of the treatments but none of the treatments provided complete protection from decay during the 9 or 10 years exposure in Mississippi. Most of the treatments did not reduce decay development in red oak cross-brace units. Many treatments protected pine cross-brace units. The L-joints were exposed for only 3-4 years, but appear more difficult to protect from decay than the cross-brace units.
T L Highley

Environmental impact of CCA poles in service
1997 - IRG/WP 97-50087
Soil samples from different depths and distances from CCA treated utility poles in Canada were analyzed for copper, chromium and arsenic content for a number of soil types, two wood species red pine (Pinus resinosa) and jack pine (P. banksiana) and different pole ages in service. A limited number of poles were equipped with water traps to collect rain water that dripped down the poles and where sufficient ground water was present, ground water samples from next to the pole were analyzed. The level of soil contamination dropped rapidly with distance from the pole, with soil levels approaching background levels within 0.25 from the pole. Generally, copper levels (above background) were highest, followed by arsenic and chromium, consistent with the known relative leaching tendencies of the three elements. Contaminant levels increased with age of the pole in service and were generally highest in wet organic soils, followed by sand loam soils and clay soils. Soil concentrations were highest at the ground line, adjacent to the poles. This suggested that a large source of the soil contamination was contaminated rain water that ran down the pole. Rain water trapped from the pole surfaces during rain events had significant concentrations of all three elements. There was no obvious drop in contaminant content in water that dripped down the poles with age of the poles. Ground water samples from next to the poles occasionally had detectable CCA components above aquatic and drinking water guidelines.
P A Cooper, Y T Ung, J-P Aucoin

Testing wood in ground contact: An artificial soil
1977 - IRG/WP 280
This document is an interim report on the development of the artificial soil medium. It includes some information on the relationship between soil, wood and water which is of relevance in testing.
E F Baines, D J Dickinson, J F Levy

Field trials on preserved timber out of ground contact
1978 - IRG/WP 3154
This report describes two different field trials studying the performance of preservative treatments on timber exposed to the weather, but above the ground. Results are presented on the protection afforded against decay, and on the efficiency of water-repellent preservative treatments in controlling the uptake of moisture by the timber. Proposals for a standard field test system are briefly discussed.
D F Purslow, N A Williams

A note on testing the efficacy of wood preservatives above ground
1995 - IRG/WP 95-20078
A number of test methods have been used to evaluate the performance of wood preservatives in above ground situations. These have included EN 113 tests following natural exposure weathering (NEWT), L-joint or T-joint tests, lap-joint tests, and decking tests. A new test referred to as the A-frame test has been developed and is under evaluation. This is based on a sandwich-type test in which a thin (3.5 mm) sample is exposed outdoors between two untreated samples on a rack or A-frame. The advantages and disadvantages of these types of tests are discussed in a short note.
G R Williams, J A Drysdale, R F Fox

Durability of different heat treated materials from industrial processes in ground contact
2005 - IRG/WP 05-40312
In this study the durability of heat treated wood originating from four different European industrial heat treatment processes in ground contact was examined. The manufacturers of heat treated material were: PLATO Hout B.V./Netherlands, Thermo Wood/Finland, New Option Wood/France and Menz Holz/Germany where Oil-Heat treated Wood (OHT) is produced. All heat treated materials showed significantly increased durability against decay in ground contact compared to untreated Scots pine (Pinus sylvestris L.), independent from the different heat treatment processes. After four years of field testing, heat treated material appears to be not suitable for in ground contact application, since long service life is required. In analogy to the classification of natural durability (EN 350-1, 1994), durability classes in the range from 2 (durable) to 4 (slightly durable) were achieved by the different heat treated materials. This stands in contrast to statements of suppliers, who promote their material as suitable for in ground applications.
C R Welzbacher, A O Rapp

Next Page