IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 149 documents. Displaying 25 entries per page.


Coconut shell pyrolytic oil as wood protectant against biodeterioration
2014 - IRG/WP 14-30648
Extensive research on various plant and microbial extracts has been conducted as an alternative to using synthetic or inorganic chemicals for wood protection. Development of effective and low environmental impact products and technologies for wood protection is imperative. In the present study, the efficacy of coconut shell pyrolytic oil as a wood protectant is analysed in terms of its antifungal, antiborer and termiticidal activities. The antifungal, antiborer and antitermite activity of coconut shell pyrolytic oil was assessed by BIS standards IS 4873 (Part I: 2008), IS 4873 (Part II: 2008) and IS 4833 :( 1993) respectively. Wood decay fungi namely, Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey (white rot) Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden( brown rot) were used to determine the antifungal effect of coconut shell pyrolytic oil. The antiborer effect of coconut shell oil was indicated by its efficacy in protecting the treated test blocks against Lyctus africanus lesne. Grave yard test was performed to determine the termiticidal activity of coconut shell pyrolytic oil against the termite fauna identified at the test yard Odontotermes horni (Wasmann), Odontotermes obesus (Rambur), Odontotermes redemanni (Wasmann) and Microtermes obesi (Holmgren). The effectiveness of coconut shell pyrolytic oil was expressed as percentage weight loss of the treated test blocks compared to untreated blocks. It was observed that coconut shell pyrolytic oil gave better protection against wood decaying organisms. When treatment methods were compared dip treatment was found to be significantly better than brush coating method. Coconut shell pyrolytic oil has the potential to be a new wood protectant of natural origin which can replace synthetic wood preservatives in future. Being a waste bye product of coconut shell charcoal industry, its utilization as a wood protectant will be a value addition to such industries.
K S Shiny, O K Remadevi


Evaluation of copperised Cashew nut shell liquid and Neem oil as wood preservatives
2005 - IRG/WP 05-30368
An effort has been made to develop eco-friendly wood preservatives using naturally available plant by-products with less toxicity. Copper was incorporated into Cashew nut shell liquid (CNSL) and Neem seed oil. Rubber wood samples were treated with these solutions employing dipping and pressure techniques in 3 different levels. These samples have been evaluated to find out the effectiveness as wood preservatives against decay fungi and termites. The combinations of copper & CNSL and copper & Neem in pressure treatment have resulted in discernibly high protection against wood rotters and termites.
D Venmalar, H C Nagaveni


Anti-fungal properties of pyrolytic oils derived from softwood bark
2000 - IRG/WP 00-30218
Thermal decomposition of balsam fir and white spruce mixed bark residues at 450°C and under vacuum (< 20 kPa abs.) results in high yields of pyroligneous liquors rich in phenolic content. This vacuum pyrolysis process has been scaled-up to a pyrolysis plant with a feed capacity of 3.5 t/h of softwood bark, which is the largest plant of this type in the world. The pyrolytic aqueous condensates have been tested for their anti-fungal properties. One of the major objectives of this study was to identify which groups of chemical compounds were the most active to inhibit the growth of wood decay fungi. The fractionation of the pyrolytic aqueous phase in four distinct parts was accomplished by a liquid-liquid extraction method. The four fractions were named F1 (ether extractibles), F2 (ethyl acetate extractibles), F3 (neutral compounds) and F4 (phenolic compounds). Petri tests were conducted using two brown rot fungi (P. placenta and G. trabeum) and two white rot fungi (I. lacteus and T. versicolor). The composition of these fractions was analysed by GC/MS. Fraction F1, with concentrations of organic acids, phenols and derivatives (3.0% by weight), benzenediols (3.9% by weight), and a variety of other products (quinones, furans, etc.), was the most promising to inhibit the growth of decay fungi, while fraction F3 showed no inhibitive effect in the Petri dish agar test. C. versicolor was most sensitive to these fractions, while I. lacteus was the least. The addition of CuSO4 to the water soluble organics improved their ability against decay.
D Mourant, Dian-Qing Yang, Xiao Lu, C Roy


Durability testing of coconut shell according to ENV 807
2011 - IRG/WP 11-10761
Coconut shell was tested in the laboratory according to the European standard ENV 807 with three different soil types: compost soil, brown rot/soft rot rich soil and white rot/soft rot rich soil. Mass losses between 14 and 16 % were achieved with all three soils, indicating that the decay type is of little importance in the degradation process. Somewhat higher mass losses, 19-22 % were obtained for the durable/moderately durable, according to EN 350-2, wood species Sipo (Entandrophragma utile), whereas preservative-treated references had significantly lower mass losses, 0.5-7 %. The results of the test were promising but further experiments and testing will be necessary to explore the full potential for coconut shell to be used e.g. for composite materials with enhanced durability against decay fungi.
J Jermer, A H H Wong, K Segerholm, T Nilsson


Recycling of used railroad ties via two-staged pyrolysis for fractionation of wood preservatives and bio-oil: pyrolytic characterization by TGA and Py-GC/MS
2015 - IRG/WP 15-50311
Creosote and copper naphthenate (CuNap) (in an oil carrier) treated railroad tie materials (crossties or sleepers) were initially heat-treated at 200 – 300 oC and subsequently pyrolyzed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to recover wood preservatives and produce a higher quality bio-oil. Preservative-desorptive temperatures at 200 and 250 oC by TGA removed water and creosote (6.6 – 9.3 wt%) from the creosote-treated crosstie materials, and water and CuNap components (21.2 – 23.3 wt%) from the CuNap-treated crossties. Temperature at 300 oC removed a shoulder DTG peak at 305 - 325 oC and weight loss accounted for 25.5 wt% in the creosote-treated tie and 30.6 wt% in the CuNap-treated tie. Temperature at 200 – 300 oC by Py-GC/MS desorbed creosote-derived chemicals such as naphthalene, acenaphthene, fluorine, anthracene, fluoranthene, pyrene and other polycyclic aromatic hydrocarbon (PAHs) derived from the creosote-treated tie; and mineral oil (alkane hydrocarbons such as tetradecane, nonadecane, hexadecane and octadecane, and heptacosane) from the CuNap-treated ties. Pyrolysis of the wood tie with elevated temperature produced a high amount of carbohydrate- and lignin-derived compounds from wood ties. Fast pyrolysis of the 200 oC-treated crossties by Py-GC/MS produced a high fraction of creosote- and CuNap compounds most of which were then not subsequently recovered through fast pyrolysis of the 250 and 300 oC-treated samples. Fast pyrolysis of the thermally preservatives-removed tie samples produced high anhydrosugars such as levoglucosan and low acetic acid, furfural and ketones as well as high pyrolytic lignin-derived compounds, which shows good potential for phenolic-based chemical production. The results demonstrate that a thermal preservative-removal step (similar to a torrefaction step) can successfully remove valuable creosote and CuNap components for re-use as preservatives and subsequently supply a clean wood without significant levels of contaminant hazardous air pollutants for use as boiler fuel, more efficient pyrolysis to produce higher quality bio-oil, gasification or other uses.
Pyoungchung Kim, J Lloyd, Jae-Woo Kim, N Labbe


Shells of Coconut and their Durability against Termite Attack
2015 - IRG 15-10853
All tropical and subtropical areas of the Earth are inhabited by termites. In climates with moderate temperatures, they occur less frequently. Especially wood and non-wood materials that grows in tropical areas and used there in timber constructions and woodworking, wood durability and protection against termites should be researched. This paper reports findings from an experimental “AW011” laboratory force- and choice- termite tests on the durability of shells of Coconut (Cocos nucifera L.) against termite attack by Reticulitermes santonensis de Feytaud to see if there could be any new use for them. Two reference tropical hardwoods were compared: Teak heartwood (Tectona grandis L.f.) as naturally durable and Jelutong sapwood (Dyera costulata Hook. f. (Miq.)) as non-durable wood. Furthermore, we compared with Beech (Fagus sylvatica L.). Pine sapwood (Pinus sylvestris L.) was the control for the tests. Overall from test varieties, termite mortality, visual rating and mass loss data, coconut shells and teak heartwood were comparably termite resistant. Jelutong and beech were rated moderately resistant while Pine was clearly susceptible among these non-durable woods.
M Dass, A H H Wong, W Unger


Field test evaluation of preservatives and treatment methods for fence posts
1985 - IRG/WP 3347
This work presents the field test results after fifteen years exposure of Eucalyptus saligna fence posts treated with six different preservatives and five treatment methods. All the combinations with oil-borne preservatives presented the best results and among the waterborne preservatives, the fence posts treated by immersion method were with the lowest performance in the field test.
G A C Lopez, E S Lepage


Fire resistance of preservative treated fence posts
1994 - IRG/WP 94-30033
Pine fence posts were pressure treated separately with CCA-C, CCA-wax, CCA-oil and creosote. Treated posts and untreated controls were planted in the ground in a randomised block design, weathered for six months and then subjected to a controlled burning test using two fuel loads. Creosote treatment increased the time that posts were alight whereas CCA treatment had no such effect. However, CCA treated posts smouldered until destruction of the majority of the posts occurred. Posts treated with CCA-oil took longer for destruction to occur than posts treated with CCA-C or CCA-wax. Creosote treated posts and untreated controls did not show prolonged smouldering and consequently were not destroyed by the burning test, although their strength was reduced. A high fuel load increased the time that posts were alight and smouldering, and for CCA treated posts decreased their time to destruction.
P D Evans, P J Beutel, C F Donnelly, R B Cunningham


Principles and procedure of the planeing test
1981 - IRG/WP 2162
Small end-sealed samples of pine-sapwood (1.5 x 2.5 x 5 cm³) are treated by brushing and afterwards different parts of the treated surface are removed. The remaining part of the sample is tested against either insects or fungi. If no attack occurs sufficient amounts of biocides have been penetrated at least beyond the zone which has been removed. In spite of some problems the test seems the only suitable method, to evaluate organic solvent preservatives, mainly those containing resins, for simple treating methods.
H Willeitner, M Gersonde


Inspection results of preservative treated stakes, maximum 33 years in field
1992 - IRG/WP 92-3690
Since in 1958, we have undertaken field experiments in Japan. For these field experiments, we used sapwoods of Japanese cedar called Sugi (Cryptomeria japonica) because of majority of plantation forest soft wood species in Japan. For some preservatives, we added sapwood of Japanese beech called Buna (Fagus crenata), a main Japanese hard wood species. Dimensions of these specimens were 30 x 30 x 600 mm³ (T x R x L). About 30 preservatives mainly water born but 20% of oil born preservatives included, were examined for this test. We checked the damage rating every year by the observation. The service life of the preservative treated stakes were estimated at the period when the average damage rating of stakes were reached beyond 2.5 . Creosote oil, creosote oil mixed heavy oil (75:25 and 50:50) and creosote oil mixed coal tar (75:25 and 50:50) are still sound conditions for 33 years. CCA (JIS K 1554 Type 1) 2% and Tancas C 2% are still sound conditions for 28 years. Because of soft rot, the treated Buna specimens were shorten as ones of treated Sugi.
K Suzuki, K Yamamoto, M Inoue, S Matsuoka


Modelling of PCP migration in the environment: Feeding the models with laboratory data
1993 - IRG/WP 93-50001-08
In 1989, Hydro-Québec began a study program on pentachlorophenol (PCP) to ensure safe use of the product at all stages. One of the aspects of the study is the creation of a predictive system for evaluating the behavior of PCP and oil migration from wood poles to the environment. This system comprises four mathematical models for predicting PCP and oil migration in and on the surface of the pole, in soil and in groundwater, and for predicting runoff. Laboratory experiments aimed at quantifying and supplying the input for each model have been designed. A method of analyzing both PCP and oil in water. wood and soil has been developed. The radial and longitudinal distributions of PCP and oil concentrations have been established for several combinations of wood species and treatments. Laboratory setups and preliminary results are presented.
A Besner, P Tétreault, R Gilbert


A new ground-contact wide-spectrum organic wood preservative: DNBP
1986 - IRG/WP 3358
A new organic wood preservative, which 25 years field tests have proved to be of efficiency and effectiveness comparable to CCA wood preservatives for ground-contact applications, is presented. Physical and chemical tests, supporting the long term field test results as well as indicating the characteristics of this preservative, are also presented.
W E Conradie, A Pizzi


Fungus cellar and stake tests with tall oil derivatives. Progress Report after 5 years' testing
1987 - IRG/WP 3442
Two derivatives of tall oils have been tested for five years in fungus cellar and stake tests. The samples were relatively quickly attacked on the surface by decay fungi, mainly soft rot, but the decay has progressed very slowly. The performance of the stakes in the tests has so far been equivalent or even better than some CCA preservatives and creosote.
J Jermer, Ö Bergman, T Nilsson


Comparison of decay rates of preservative-treated stakes in field and fungus cellar tests
1980 - IRG/WP 2135
With the exception of acid-copper-chromate, zinc-chrome-arsenate, and sodium pentachlorophenoxide, the relative performance of preservatives in the fungus cellar was similar to that in the field.
M E Hedley


Effects of various preservative treatments on the mechanical and physical properties of plywood
1993 - IRG/WP 93-40007
The technical properties of plywood are related to both the intrinsic characteristics of its composing wood species and the quality and performance of the glue bond which acts as an interface between veneer sheets. Consequently mechanical and physical testing and glue bond strength analysis offer an appropriate means for studying the effect of preservative treatments on the overall quality of plywood. A range of boards was treated with waterborne and oilborne preservatives. Changes in modulus of elasticity, modulus of rupture and tensile strength were noted as well as variations in physical properties. Analysis of the glue bond strength was done by shear strength testing and determination of the amount of wood failure after different ageing procedures.
J Van Acker, M Stevens


Improved resistance of Scots pine and Spruce by application of an oil-heat treatment
2000 - IRG/WP 00-40162
Spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were subject to a heat treatment which was carried out in an oil-bath. The aim was to improve the dimensional stability of the treated wood and its resistance against fungi. The bath of vegetable oil provides a uniform heat transfer at temperatures of 180°C, 200°C and 220°C and protects the submersed wood from oxygen. Heat treatment in air atmosphere was also carried out at the same temperatures for comparison. Wood treated in hot oil was more equal in its appearance than wood heated in hot air. The treatment of spruce and pine in the oil-bath resulted in a better resistance against Coniophora puteana in a lab test according to EN 113 compared to the treatment in air atmosphere. In order to achieve the wanted upgrading effect, certain changes of mechanical properties and colour must be accepted. However, the strength loss caused by the heat-treatment in oil was less severe than in air atmosphere. Since all materials and the energy used in the process originate from renewable resources, the oil-heat-treatment appears to be environmentally friendly. All in all, the heat treatment in oil might be a promising approach to upgrade wood for outdoor use.
M Sailer, A O Rapp, H Leithoff


Wood preservation in the Australian beekeeping industry
1988 - IRG/WP 3473
This paper reports the results of a survey of Australian commercial beekeepers working 200 or more hives in June/July 1985. Nine hundred and forty seven apiarists were asked to participate and to provide information on their wood preservation methods, painting procedures and maintenance of bee boxes. Three hundred and eighty-four apiarists returned completed questionnaires (41%). The main wood preservatives used are copper naphthenate solutions (45%), linseed oil (8%), copper chromated arsenate (3%), hot wax (9%), copper naphthenate solution in linseed oil (3%), linseed oil/wax mixtures (3%) and paint (23%). The majority of apiarists (96%) paint treated bee hives, but there is considerable variation in wood preservative treatment procedures and paint application. Most wood preservative treatments (95%) are of the &apos;do-it-yourself&apos; variety, radiata pine being the most utilized timber. The bottom boards of bee hives are considered the most susceptible to wood decay and subterranean termite damage, as are cleats, stands or any wood in ground contact.
P J Robinson, J R J French


Effects of some essential oils on wood destroying organisms
1993 - IRG/WP 93-10047
Three wood destroying fungi: Botryodiplodia theobromae Pat. (stain), Gloeophyllum sepiarium (brown rot), and Pycnoporus sanguineus (white rot) were exposed to six plant essential oils: the peppermint, kaffir lime or leech lime, lavender, tarragon, holy basil, and the eucalyptus. The peppermint oil showed most effective to inhibit fungal growth, while eucalypus oil was the least effective. The other oils inhibition rate varied according to the species of fungi. In the experiment of the powder post beetles Heterobostrychus aequalis Waterh., the insects were killed within three days in the oil of tarragon, eucalyptus and holy basil, while in lavender oil they could live to ten days the same as controls. But on the contrary in the oil of peppermint and kaffir lime, some of them could even lived longer than the controls.
K Atisongkroh, C Anantachoke, P Lekuthai, S Pensook, T Kittirattrakarn


Determination of toxic limits of wood preservatives towards wood-destroying Basidiomycetes. Investigation on the effect of the use of two impregnated wood blocks and of one impregnated and an untreated block respectively in Kolle jars on the toxic limits of wood preservatives
1973 - IRG/WP 225
O Wälchli


Preventing fungal attack of freshly sawn lumber using cinnamon extracts
2007 - IRG/WP 07-30432
The potential for using cinnamon oil as an anti-mold and stain compound was investigated on ponderosa pine sapwood. Cinnamon oil was highly effective when used in ethanol, but its activity declined when it was mixed with only water. Attempts to enhance water solubility with surfactants improved solution stability, but had no apparent effect on biological activity. Further studies with other co-solvents are planned
Shujun Li, C Freitag, J J Morrell


Chapter 6 - Preservatives of bamboo
2007 - IRG/WP 07-10635-06
Almost all currently available oil-borne, water-borne and compound types of preservatives suitable for the preservation of bamboo or wood have been described along with their classifications, applications, formulations, merits and demerits, history of invention or discovery and development. The preservatives suitable for wood are also considered suitable for bamboo.
A K Lahiry


Biological effectiveness of ground-contact wood preservatives as determined by field exposure stake tests
1984 - IRG/WP 3297
Field exposure tests conducted on stakes treated with different creosotes, mixtures of creosote and waxy oil as well as different CCA wood preservatives over a period of 25 years, gave the following results: The CCA preservatives provided excellent biological protection to treated stakes, especially against fungal attack. The CCA Type I, currently approved for use under South African conditions is not inferior to the CCA Type II during long-term ground-contact exposure if the active elemental contents and effective retentions are taken into consideration. The creosotes provided good protection against termite attack but showed fairly poor fungal resistance during long-term ground-contact exposure under wet conditions. The addition of waxy oil greatly improved the effectiveness of creosotes against fungal attack. The CCA preservatives proved to be a better overall ground-contact preservative compared with the creosotes.
W E Conradie, A Pizzi


Pyrolytic treatment of CCB treated wood
2005 - IRG/WP 05-50224-23
Environmental problems caused by the toxicity of metallic elements of the preservative occur when treated wood comes to end of use. In the experiment, CCB treated wood chips were pyrolysed at various temperatures and residence times and the behaviour of boron, chromium and copper was observed. The three elements are almost entirely retained in the charcoal. There is no influence of final temperature and residence time on the chromium and copper retention (% weight). For temperature higher than 300 °C, a 15 % loss of boron relatively to copper is observed when the residence time goes from 15 to 30 minutes.
J F Collin, C G Jung, J M Romnée, J Delcarte


The distribution of introduced acetyl groups and a linseed oil model substance in wood examined by microautoradiography and ESEM
2000 - IRG/WP 00-40169
Microautoradiography, a photographic method that shows the localization of substances labelled with radioactive isotope, and Environmental Scanning Electron Microscopy (ESEM) were combined to enhance sensitivity, resolution and reliability for examination of the distribution of introduced substances in wood. The preparation of microautoradiographs is less complicated when investigated with ESEM and the preparation of ESEM-samples is quick and easy compared to a conventional SEM. When investigating microautoradiographs with ESEM, the wood structure is observed underneath the almost transparent photographic film. Silver grains, indicating the location of studied substances, are clearly distinguish from the wood material. The technique was used in two case studies for examination of cell wall penetration and distribution in pine sapwood. The distribution of acetyl groups, introduced by acetylation with acetic anhydride, and the distribution of a linseed oil model substance, triglycerol trioleate, were examined. Examinations of introduced acetyl groups showed an even distribution of acetyl groups in the wood cell wall at acetylation level of about 5, 15 and 20% (weight gain). Examination of the linseed oil model substance, glycerol trioleate, showed the presence of the model substance on applied surfaces, in rays and in lumen of some latewood cells. No cell wall penetration was observed.
M Rosenqvist


Effects of artificial UV weathering and soft rot decay on heat treated wood
2005 - IRG/WP 05-40302
Oil and inert gas oven heat treated pine wood strips 100 µm thick were mildly heat treated (200°C, 30 mins linseed oil, 120 mins oven). Following treatment, specimens were exposed to UV weathering (300 hours) and decay by the soft rot fungus, Chaetomium globosum. The effects of each treatment were assessed by zero span tensile testing, microscopy and by FTIR. Tensile testing of heat treated strips showed greater strength losses in the oil treated samples (73%) than in the oven treated samples (26% loss). Heat treatment darkened the wood strips but this was photo-bleached on exposure to UV artificial weathering. The UV exposure caused some loss in tensile strength (35%) but the additional effects of UV on the tensile strength were less in heat treated wood (oil 15%, oven 18%). The combined effects of UV and fungi on the tensile strengths were less severe for treated wood than in untreated wood, (oil 4%, oven 18%) thus some protection was afforded by the heat tretaments. Exposure of untreated wood strips to the soft rot fungus caused some loss in tensile strength (32%), but heat treated wood showed small but not statistically significant gains in tensile strength after fungal exposure (oil, gain 30%, oven, gain 3%). Microscopic examination confirmed that a soft rot was minimal in heat treated samples, i.e. it was mainly confined to wood cell wall penetration. The combined effects of UV and fungi caused further losses of tensile strength in both oven and oil heat treated samples, but this loss was less severe than that which occurred in untreated controls. However, due to the severity of the initial losses caused by the oil heat treatment, the highest losses overall were in those oil heat treated samples exposed to UV (82%) and UV and decay (78%). Microscopic examination revealed that decay was more advanced in UV exposed samples. The FTIR spectra of oven heat treated samples did not show any change, while the oil heat treated samples increased absorbance at 1737cm-1 and 1450cm-1 relating to the presence of oil. Following fungal decay, no changes were observed, this corresponds with the cavity attack by soft rot fungi, which leave adjacent portions of cell wall material untouched. The ultra violet exposure affected the spectra of all specimens, increasing the absorbance at 1737cm-1. This relates to photo-degradation of the hemicelluloses, forming new carbonyl groups. In the UV exposed untreated wood there were also increases in absorbance at 1510 and 1160cm-1 relating to alterations in lignin structure.
M D C Hale, S C Ghosh, M J Spear


Next Page