IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 27 documents. Displaying 25 entries per page.


Evaluation of the fire retardant efficacy and leach resistance of an amino resin fire retardant - Preliminary report
1983 - IRG/WP 3260
The Early Fire Hazard Indices of untreated Pinus radiata were determined by testing to Australian Standard 1530, Part 3 - 1976. Differences in the performance of heartwood and sapwood were noted, with heartwood samples giving higher Ignitability, Heat Evolved and Spread of Flame indices. The treatability of Pinus radiata with Pyrogard H was assessed, and backsawn sapwood treated more effectively than all other combinations of direction of cut and sapwood/heartwood. Treatment of kiln dried DAR Pinus radiata with Pyrogard H did not produce dimensional changes of practical significance. This factor, plus a high concentration gradient of retardant in the treated timber, make it an ideal treatment for fully machined and profiled Pinus radiata. The leach resistance of the retardant was assessed. A greater percentage of phosphorus than nitrogen was leached, but the retardant remaining after leaching conferred similar protection to the unleached material at equivalent rententions. Pyrogard H is an effective leach resistant fire retardant for Pinus radiata.
W D Gardner, P N Alexiou, P Lind, D Butler


Effect of vapour boron treatment on mechanical properties of wood based board materials
1992 - IRG/WP 92-3727
The mechanical properties of Medium density fibre board, Chipboard and Oriented strand board were investigated after treatment to two retention levels of boric acid applied as a vapour phase system. A range of mechanical properties were investigated. The vapour boron treatment does not have any significant effect on most of the mechanical properties of the boards. The exception is a reduction in impact strength especially at the higher retention level.
R Hashim, D J Dickinson, R J Murphy, J Dinwoodie


Metal plate fasteners in trussed rafters treated with preservatives or flame retardants - corrosion risks
1977 - IRG/WP 3104
In designing roof trusses employing metal plate fasteners it is generally assumed that the roof will remain dry in service. Whilst this is generally true, damp conditions do arise under some circumstances, although it is not possible to quantify the extent of the risk. It is only possible, therefore, to give general recommendations which must be interpreted in the light of local experience of service conditions and site practice. Under severe conditions in the presence of moisture and salts, zinc coatings may not afford long-term protection against the electrochemical processes described above, and suitable precautions must be taken to minimise degradation. Moisture control is the most effective way of avoiding corrosion and if this can be achieved at all stages of manufacture, storage, and use, no diffculties should be encountered. If CCA treatments are employed, time must be allowed for the 'fixation' reactions to be completed before the plates are pressed into the timber. In cases where the assembly may become wet organic solvent preservative treatments are to be preferred in conjunction with metal fasteners. Those formulations which contain water-repellents will give added protection. Salt based flame retardant treatments should not be used in conjunction with fasteners, as the potential corrosion risk is too high. Connector plates manufactured from stainless steel may be considered for use in high-hazard situations. Finally, it has been shown at PRL that the use of nonconducting plastic coatings on the plates confers very considerable durability on these products, which may then be used successfully over prolonged periods under very adverse conditions. Such an approach may be well worth consideration in certain situations and further information on this method can be obtained from Princes Risborough Laboratory. This paper has been produced with the co-operation of the Agrement board, the International Truss Plate Association and the British Wood Preserving Association.
R A Laidlaw, L C Pinion


Experimental Measurements of Fire Retardants on Plywood at Fire Test
2015 - IRG/WP 15-40709
The use and development of wood composite materials increased in the past few years. However, in Brazil there are some restrictions on these products regarding their use, since it could be considered a potential risk at a fire situation. Thus, becomes evident the need for researches aiming to fit these in safety standards. This study aims to evaluate the efficiency of two new fire retardant products produced by a Brazilian industry. Tests were performed in plywood panels of Pinus spp previously immersed, varying the products concentrations and compared with untreated samples. The test used to evaluate the flame spread in a panel was the modified Schlyter test. The product in question was proved efficient, before and after shutting off the burner. Comparing with the panels without treatment, there was a decrease of 400% of the height of the flame spread on the treated ones.
G C A Martins, L A Marcolin, J M Vidal, C Calil Jr


Thermal stability of a wood protective biofinish and the influence of flame retardants on Aureobasidium cells
2017 - IRG/WP 17-30716
In general there is an increasing need for sustainable resources, including sustainable building materials. Wood is one of these sustainable resources and is more used as an outdoor building material. Since unprotected wood will usually be degraded during outdoor exposure, many different protection systems are available on the market. Protection systems containing biocides however might create obstacles in a circular economy. A wood protecting biofinish will improve the service life of wood while reducing maintenance costs and contributing positively to a circular economy. The biofinish concept can be applied on different wood species, which makes it possible to use less durable European wood species for outdoor applications without the use of biocides. Another important property of building materials is fire resistance. Relatively little information is available about the direct interactions of flame retardants with wood and micro-organisms. The yeast-like fungus Aureobasidium is the most important component of the biofinish. For the further application of biofinish treated wood as a building material and the possibilities of adding a flame retardant to the biofinish, more information about the effects of flame retardants on Aureobasidium cells is necessary. The aim of this study was to assess the thermal stability of the biofinish on wood and achieve further information about the interaction of Aureobasidium with conventional flame retardants. Wood, treated with the biofinish and in combination with flame retardants was first tested using thermogravimetric analysis (TGA) to get an indication of the thermal stability of different treatments. In the second step, effects of the added flame retardants on Aureobasidium cells were assessed by monitoring cell growth and viability in a fermentation. The effects of the interaction between viable Aureobasidium cells and the flame retardants were determined using live/dead microscopic assessments.
S Rensink, E A M Klein Rot, M F Sailer


The biostatic effect of copper on decay of fire retardant-treated mining timber
1991 - IRG/WP 1507
Blocks of Eucalyptus grandis were treated with 20kg/m³ ammonium sulphate as fire retardant and challenged with Coriolus versicolor. Replicates were soil buried. A second set of blocks was treated with retardant and copper at 6.6 kg/m³ (ie 1% w/w), and challenged similarly. After 8 weeks weight losses produced by Coriolus versicolor in untreated, retardant treated and copper supplemented blocks were 45, 25, and 0% respectively, and corresponding weight losses in soil were 27, 25 and 10%. These results, and electronmicroscopical observations, showed conclusively that Eucalyptus grandis treated with fire retardant was rapidly decayed, and that copper inhibited such decay.
G D Shelver, E A Shelver, A A W Baecker


Absorption of inorganic salts solutions. Retentions of inorganic salts. Fire retardants
1990 - IRG/WP 3625
The study aims evaluated the impregnation capacity using fire retardants on woods with differents densities. At the same time, impregnation with several fire retardant salts were carried out in order to obtain their absortion and retention in wood.
A Garcia, J Navarro


Bibliography: Interactions of wood preservatives with wood, metals, glues, paints and concretes
1983 - IRG/WP 3271
H Becker


Utilization of plasma treatments in the field of wood protection
2021 - IRG/WP 21-40912
Plasma treatments have been used for modification of surfaces of wood and wood-based materials for some decades and solutions were developed to apply it for wood protection. This contribution aims to present the background, introduce the available plasma technology, and to give an overview on the typical applications and benefits.
S Dahle, H Militz


Distribution of fire retardant chemicals in kempas (Koompassia malaccensis)
1994 - IRG/WP 94-40037
Samples of Kempas (Koompassia malaccensis) heartwood were treated by vacuumpressure impregnation with solutions of monammonium phosphate, diammonium phosphate, ammonium sulphate or a borax-boric acid mixture. A commercial saltbased fire retardant formulation was also used. After slow air drying, the treated wood samples were sub-divided and zonal analysis carried out in order to determine the gradients of chemical retention form surface to core. Steep gradients of fire retardant chemicals were found irrespective of formulation. In a pyrolysis study, the amount of residue after pyrolysis at 550°C was proportional to the retention gradients of the fire retardant chemicals being greatest in the surface zones and least in the core of the samples.
A R A Malek, R J Murphy


Bibliography on the use of boron compounds for the preservation of wood
1973 - IRG/WP 315
This bibliography is based on an earlier literature survey prepared by J. Thornton and Wm. E. Bruce (O.E.C.D. Document No. 27/DAS/CSI/M/91) which was enlarged and revised for a meeting in Paris in October 1968 (Document 27/DAS/CSI/M554) by Professor W. Bavendamm of Reinbek. The latter (1968) document with its 166 references has now been extended and brought up to date. Acknowledgments are due to Borax Consolidated Ltd. and to the New Zealand Forest Research Institute who have both helped by providing us with further compilations of their own. Boron compounds have been in use in the past and are still found useful in medicine in the form of boric acid solutions and boracic ointment. They have also been used for the conservation of foodstuffs. In the treatment of wood they were first mostly used as fire retardants. Since the Second World War they have become increasingly important in the field of wood preservation.
R Cockcroft, J F Levy


Uptake of copper by mycelium of wood decay fungi growing on copper S-substituted thioglycolate containing nutrient media
1998 - IRG/WP 98-10291
Mycelia of Trametes versicolor, Coniophora puteana and Poria monticola were grown on potato dextrose agar (PDA) media, containing various concentrations of copper N,N-dimethyldithiocarbamoylacetate (which may be regarded as a copper S-substituted thioglycolate). The tested copper compound revealed relatively low fungicidal activity. After 13-18 day growing period, we determined concentrations of absorbed copper in the isolated mycelia by flame atomic absorption spectroscopy. Contents of copper in mycelia were the highest at the highest two concentrations of S-substituted thioglycolate and reached the value of 150 µg/g of mycelium of Trametes versicolor and 370 µg/g in the case of Coniophora puteana. On the other hand, uptake of copper by Poria monticola was lower - only up to 40 µg/g.
M Humar, M Petric, F Pohleven, P Kalan


Effect of fire retardants (monoammonium phosphate and diammonium phosphate, mixture of monoammonium phosphate and borax and ammonium sulphate) on beech wood with dipping and Lowry methods
2006 - IRG/WP 06-40350
In this study, the possibilities of using four kinds of chemicals as fire retardants with 12% concentration for beechwood (Fagus orientalis Lipsky) was surveyed. Providing testing samples that are related to the measurement of fire resistance properties according to JIS A-1321-1975 standard were evaluated. Wood samples were impregnated with Lowry and dipping methods. In this study, samples impregnated with diammonium phosphate by Lowry method had the best fire resistance properties. Wood samples impregnated with diammonium phosphate had the highest compression parallel to grain and highest resistance of hardness and samples impregnated by ammonium sulphate had the least total shrinking.
M Akhtari, D Parsapajouh, M Arefkhani


Effect of fire retardants (monoammonium phosphate and diammonium phosphate, mixture of monoammonium phosphate and borax and ammonium sulphate) on beech wood with dipping and Lowry methods
2006 - IRG/WP 06-40350
In this study, the possibilities of using four kinds of chemicals as fire retardants with 12% concentration for beechwood (Fagus orientalis Lipsky) was surveyed. Providing testing samples that are related to the measurement of fire resistance properties according to JIS A-1321-1975 standard were evaluated. Wood samples were impregnated with Lowry and dipping methods. In this study, samples impregnated with diammonium phosphate by Lowry method had the best fire resistance properties. Wood samples impregnated with diammonium phosphate had the highest compression parallel to grain and highest resistance of hardness and samples impregnated by ammonium sulphate had the least total shrinking.
M Akhtari, D Parsapajouh, M Arefkhani


Fire, flame resistance and thermal properties of oil thermally-treated wood
2007 - IRG/WP 07-40361
Oil thermal treatment, first developed by German scientists, is a promising technology for improving the durability and dimensional stability of wood for outdoor above-ground residential uses such as siding and shingles. The present authors’ previous research showed that 220ºC is an optimal treatment temperature, with 2 hours’ treatment producing wood with significantly improved moisture and biological resistance. This paper mainly deals with the preliminary investigation into fire, flame resistance and related thermal properties of such thermally modified wood. Slack wax and soybean oil were used as heating media for treatment at 220 ºC. Small-scale fire and flame resistance tests including the crib test and the two-foot tunnel test, were carried out. DSC (Differential Scanning Calorimeter) and TGA (Thermogravimetric Analysis) were also used to investigate the corresponding thermal properties. The results indicated that the oil-thermal treatment reduced the flame resistance, as a result of the oil or wax residue in wood surface, and wax absorbed by wood during the high-temperature treatment may facilitate extra heat evolution during thermal decomposition in air. However, in general, oil thermally-treated wood, especially soybean oil-treated wood, did not reduce the fire resistance of wood or affect the thermal properties of wood significantly.
Jieying Wang, P Cooper


Surface color and roughness characteristics of medium density fiberboard (MDF) panels treated with fire retardants
2008 - IRG/WP 08-40420
The objective of this study was to determine surface characteristics and color change properties of Medium Density Fiberboard (MDF) treated by fire retardants (FR) with 10% concentration. Experimental panels were made using by melamine ureaformaldehyde (MUF) adhesive having 10%, 15%, 20% of melamine. The surface properties of the samples were determined using a fine stylus technique. Three roughness parameters, namely average roughness (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) were determined from the surface of the samples. Color change properties of MDF samples were evaluated to CIE L*a*b* methods by a spectrophotometer (Minolta CM-2600d). It was found that the surface roughness values of the FR treated MDF panels were higher than those of control panels. The highest surface roughness values obtained from MDF panels treated with MAF+BA+NPB, MAF+BA+BX, the lowest values obtained from MDF panels treated with MAF+AL. Also surface roughness of the MDF panels improved with increasing melamine additive rate in the MUF adhesive. According to CIEL*a*b method, color change properties of the samples showed variation as function of chemicals type. Especially, while the highest color change(?E) were determined for MDF samples treated with MINPB and MAF+BA+NPB, the lowest color change (?E) were obtained from MDF samples treated with MAF+AL, MIN.
D Ustaömer, M Usta, S Hiziroglu


Laboratory and field exposures of FRT plywood: Part 1. Physical test data
2008 - IRG/WP 08-40426
Our understanding of the laboratory induced degradation with fire retardant systems is currently limited since we are unable to correlate laboratory steady-state experiments with actual in-service field degradation. Current model studies have generally been limited to isothermal rate studies with selected model FR chemicals. Other factors also play a major role in the degradation of FR-treated wood. These factors, which have not been studied in any detail, include relative humidity/moisture content cycles and thermally-induced evolution of ammonia from ammonium phosphates to give phosphoric acid. The objective of this study was to determine the relationship between laboratory and field results based on strength-temperature-relative humidity (moisture content)-FR chemical interactions. The impact of the variables was evaluated by measuring bending strength properties and comparing matched laboratory and field exposure samples. In this first paper, the physical test data show the positive effects of adding a buffering system to model FR compounds when exposed to high moisture environments and the negative effects of increasing the moisture in the in-service environment during exposure.
H M Barnes, J E Winandy, C R McIntyre


Effects of intumescent formulation of vinyl acetate-based coating on flame-retardancy of thin painted red lauan (Parashorea spp.) plywood
2011 - IRG/WP 10-40537
Using intumescent coatings on wood-based materials is an effective method for fire safety. The intumescent coatings consist of four major components: (1) binder resin (BR), (2) carbonizing substance (CS), (3) foam producing substance (FPS) and (4) dehydrating agent (DA). Previous studies have demonstrated that the formulation of the four components strongly influences the performance of coatings. This study investigated the effect of intumescent formulation of vinyl acetate-based coating on flame-retardancy of plywood. Two sorts of widely used binder resin (BR) for vinyl acetate-based coating, ethylene vinyl acetate copolymer (EVAc) and vinyl acetate acrylic copolymer (VAC), were used. The fire retardancy of coatings on plywood was assessed by a cone calorimeter. Total heat release and time to peak heat release rate are the two primary parameters. The data showed that lower BR and FPS content decreased total heat release and lengthen time to peak heat release rate. This mechanism to achieve better fire performance was verified by using oxygen bomb calorimeter and thermogravimetrical analysis, exhibiting lower heat of combustion and weight loss. The lower BR and FPS content can extend the survival duration of phosphor-carbonaceous chars. The results provide information for designing vinyl acetate-based coating.
Chih-Shen Chuang, Kuang-Chung Tsai, Te-Hsin Yang, Ming-Kuang Wang, Chun-Han Ko


Wood-leather panels – A biological, fire retardant building material
2012 - IRG/WP 12-40615
The poor flame retardant properties of wood-based products are among the severest obstacles, hindering its use in the commercial building sector. Recently, some attempts to improve the fire properties, relying on inflammable salts or reactive halogen compounds, have been presented, although they either cause problems with machining or embody harmful compounds (halogen derivates). In this paper, the fire retardant properties of a novel material, wood-leather panels, are determined by the use of flame tests in a furnace according to ÖNORM EN ISO 1363:2011. The specimens were evaluated according to integrity and surface temperature. For the test specimens, wet white (WW) and wet blue (WB) leather shavings, with varying contents were used. The main finding is that both, panels containing WW and WB leather shavings, show properties superior to current flame-retardant medium density fibre boards, MDF B1,s2-d0. An optimum was found here at a leather content of 50%. In order to describe this behaviour towards fire in further detail, the calorific value of the material as well as the thermal conductivity were determined. As the leather panels produce a foam-like structure during the fire treatment, it is assumed, that this is caused by the exhaust of gases, leading to decreased temperature flow through the specimen, resulting in the observed properties. It can be concluded that the panels show superior fire retardant properties, compared to commonly available flame retardant material. Therefore further research in this field is proposed, with the aim to produce a certified product.
S Wieland, U Stöckl, T Grünewald, S Ostrowski, A Petutschnigg


The whitening cause of Korean wooden heritage by flame retardant treatment
2015 - IRG/WP 15-20560
Korean wooden heritage used to treat by flame retardants in order to protect fire. There are 2 types flame retardant using for wooden heritage. These flame retardants treatment are basic measure that apply to wooden heritage along with other fire protection. The flame retardants cause white stains by reacting with Korean traditional wood painting (Dancheong) and increase wood humidity. The Korean government had discontinued use of flame retardants on the wooden cultural assets because of this whiteness phenomenon. This study was carried out to find out the cause of white stains by flame retardants treatment. The reaction of pigment and flame retardants was analyzed.
Jin Qyu Kim, Gyu-Seong Han, Yong Jae Chung, Hwa Soo Lee, Dong Won Son


Study on the Effects of Flame Retardant in Dancheong for Korea Wooden Cultural Heritage
2015 - IRG/WP 15-40692
This study identifies the effect of the agent depending on environment change and conducted basic study to prepare criteria for stable application. Dancheong sample, which is similar to wooden cultural heritage, was manufactured to study the effect of the agent on dancheong. Regular observation on the samples located in inland and shoreline area in the country detected visible phenomena. Whitening, melting, peeling were observed, especially whitening was most frequently observed. This can be interpreted that whitening occurs when calcium carbonate reacts to phosphate system, a main ingredient of flame-proofing agent.
Hwa Soo Lee, So Jung Lee, Gyu Seong Han, Yong Jae Chung


Fire protection of wooden facades in Norway
2015 - IRG/WP 15-40710
Wood products are experiencing a renaissance as construction material in Europe due to their environmental benefits. In Norwegian building design however, timber has always played an important role but has had its limitations in urban architecture. One of the reasons is a high demand to fire safety in dense house building and multi-story buildings. Though novel construction methods and fire safety design concepts have widened the field of applications during the last years, architects and engineers still face challenges in using wood in buildings that require high fire safety. A critical point of many flame-retardant chemicals in outdoor applications is their poor fixation in wood; they are prone to migration due to moisture changes, which bears the risk of salt crystallization on product surfaces often associated with damage of coatings. Additionally, loss of the chemicals may decrease the fire performance. The draft standard prEN 16755:2014, superseding TS 15912:2012, prescribes the classification requirements for the durability of the reaction-to-fire performance of flame-retardant-treated wood products in humid conditions. The development of the TS 15912 into a European standard is an important but only a first step forward to guide planners to find suitable flame-retardant treated wood products for outdoor applications. The awarenes’ of building planners and the construction industry for choosing appropriate treatments in humid conditions has to be raised; besides, a further development of flame-retardants is desirable, which show a high leaching resistance and, at best, increase the durability against decay and discoloring fungi.
U Hundhausen, K-C Mahnert


Fire retardant treated wood products – Properties and uses
2016 - IRG/WP 16-30701
Wood is combustible, but can still perform very well in fire, especially for load bearing structures. However, visible wood surface may not fulfil the fire requirements in building codes and fire retardant treatments may be an option. The highest reaction to fire classification for combustible products may then be reached. However, the excellent fire performance of the virgin fire retardant treated, FRT, wood products may degrade over time, especially in outdoor applications. Two cases of long term durability of FRT wood products exist and standard procedures are available for limited hygroscopicity and maintained fire performance after weathering. Structural degradation may also occur, but is relevant only for load-bearing uses. Recommendations on end uses and suggestions for further research are included.
B Östman, L Tsantaridis


Selection of heat flux value for wood fire retardants testing using MLC
2018 - IRG/WP 18-40846
One of more crucial elements of investigating treated wood combustion properties with the use of a cone calorimeter is a proper selection of heat flux (HF). The HF level is directly reflected in time to ignition and a thermal degradation degree. The ignition of raw wood or of wood ineffectively protected against fire occurs at a low HF level, i.e. 10-20 kW/m2. By contrast, the ignition of wood which is effectively protected against fire, may occur no sooner than at HF 50 or even at 75 kW/m2. The aim of the paper was to analyse the problem of the selection of heat flux intensity in both experimental and standard fire testing with the use of a mass loss calorimeter (MLC). The subject of the analysis was wood treated with protective agents of various durability and fire resistance. On the one hand, the high HF value for wood samples of low fire resistance restricts or even excludes practical applications of an MLC as a tool for the evaluation of fire protection efficiency. On the other hand, too low value of HF prevents wood either from ignition or from determination of its thermal degradation degree. It especially applies to the situation when wood is effectively protected against fire. In both cases, the problem arises at the interpretation stage of obtained results. The identified problem was presented on the example of wood treated with chemical compounds which are ingredients of commonly used fire retardants, i.e. MAP – monoammonium phosphate, DAP – diammonium phosphate and PC – potassium carbonate, well known for their fire retardant properties. They are also known for their high solubility, which proves their high leaching from wood resulting consequently in a significant decrease in fire retardant properties. Unfortunately a versatile research procedure was not proposed in the performed study. However, the necessity for the individual selection of physical properties of a combustion process was emphasised. The above forces an unconventional method of result interpretation.
B Mazela, W Perdoch, W Grześkowiak, A Batista


The Study of the Preparation of Overlaid MDF with the Flame Retardant Impregnated Paper
2018 - IRG/WP 18-40848
The preparation of overlaid medium density fiberboard (MDF) was studied. The flame retardant impregnated papers (FRIP) were overlaid on the surface of the MDF for the fire protection. The results showed that: 1) The production of the FRIP was based on the technology of melamine-impregnated paper, which required the viscosity of the impregnated resin lower than 20s. However, with the addition of the pentaerythritol (PER), one component of the flame retardant, the viscosity of the resin increased rapidly because of H-bonds. The viscosity of the resin was kept low by addition of urea. 2) The curing time of the resin was adjusted by the ratio of F/(M+U) and the addition of ammonium polyphosphate. 3) The surface bond strength of the FRIP met the standard requirements, which was influenced by the pressing conditions. 4) The flame retardant was concentrated on the surface of wood materials with the FRIP. The efficiency of the flame retardant was enhanced significantly, and better than that of the physical mixture and impregnation, and the cost was reduced.
W Qu, M Wu, Y-Z Wu


Next Page