Your search resulted in 168 documents. Displaying 25 entries per page.
Chemical, physical-mechanical characterization and durability of thermally modified beech and ash wood by thermo-vacuum process (Termovuoto)
2016 - IRG/WP 16-40758
The paper illustrates part of the results from the CIP Eco-innovation project “Thermo-vacuum: new process for new generation of thermally modified wood”. The project is part of the 7th Framework Programme for European Research and Technological Development, and thermo-vacuum modified wood is already on the European market. The project was selected by the European Commission, EASME Agency, as "...
M Jebrane, I Cuccui, O Allegretti, N Terziev
Development of Wood Modification – High melting point wax and hot oil treatments
2016 - IRG/WP 16-40768
This study covers an introduction to the projects where new facilities were created for developing wood modification. In this new research environment it is possible to treat wood with versatile equipment. First modifications with this equipment are going to be done in high temperature and pressure using high melting point waxes and hot oils.
Earlier studies, tests and commercial products show...
H Turunen, L Linkosalmi, J Peura, O Paajanen
Hybrid green composites manufactured with glass fiber and jute fabric skin by VARTM process: Fungal, mold, and termite resistance tests
2017 - IRG/WP 17-40780
Hybrid green composites are increasingly used in building applications due to the development of new production approaches. Biological performance of such composites is needed when they are employed in extreme conditions. Hybrid composite panels were manufactured by wood furnish, glass fiber, and jute fabric skin by the vacuum assisted resin transfer molding (VARTM). Petri dish test method was fol...
S N Kartal, E Terzi, M Muin, A H Hassanin, T Hamuoda, A Kilic, Z Candan
Decay resistance variability of European wood species thermally modified by industrial process
2017 - IRG/WP 17-40807
Thermal modification is now considered as a new ecofriendly industrial wood modification process improving mainly the material decay resistance and its dimensional stability. Most industrial thermal treatment processes use convection heat transfer which induces sometimes heterogeneous treatment temperature propagation within the oven and lead to the heterogeneity in treatment efficiency. Thus, it ...
K Candelier, L Pignolet, S Lotte, A Guyot, E Cuny, B Bousseau, M-F Thévenon
A Green and Novel Technology for Recovering Copper and Wood from Treated Wood Waste – Part II: Optimization, copper metal recovery, and process design
2017 - IRG/WP 17-50326
The US consumes 70 million pounds of copper and produces 580 million cubic feet treated wood annually. The EPA disallows burning and reusing treated wood waste due to health/environmental concerns. Vast quantities of copper and wood are landfilled. Two safe and low cost extraction systems, citric acid and ammonium citrate, were identified in Part I of this study. In Part II of the study, effects o...
S Chen, R Patel
Thermodynamic properties of furfurylated wood during moisture adsorption process
2018 - IRG/WP 18-40828
Furfurylation of wood seems a promising wood modification method considering the wide raw material source of furfuryl alcohol (FA) and overall performance of FA modified wood. However, the modification mechanism of furfurylation is still not clear and needs further investigation. In this study, poplar (Populus cathayana Rehd.) samples with the size of 1(R) mm × Ф4 mm, were impregnated with ...
J Wang, J Cao, T Yang, E Ma, W Wang
Visualization of Feeding Process of Larvae of the Wood-boring Beetles Using X-ray Computer Tomography
2019 - IRG/WP 19-10953
X-ray computer tomography (CT) was applied to observe the movement of the larvae of the wood-boring beetles Lyctus brunneus, Lyctus africanus, and Heterobostrychus aequalis inside the infested wood specimens. The larvae bred with artificial diet were inserted into the hole of wood specimens of rubber wood Hevea spp. or Japanese oak Quercus crispula. The wood specimens with larvae were scanned usin...
Y Yanase, H Watanabe, I Fujimoto, T Yoshimura, Y Fujii
Exploring the use of X-ray micro CT as a tool for the monitoring of moisture production and mass loss during lab-based fungal degradation testing
2019 - IRG/WP 19-20654
Bio-based building materials, such as wood and wood-engineered products, are susceptible to degradation by decay fungi. In-depth knowledge on the intricate material-fungus relationship as well as performance data for many bio-based building materials are still lacking, and especially knowledge on how a material’s structure and moisture properties affect the degradation process is missing. Althou...
L De Ligne, J Van den Bulcke, A De Muynck, J M Baetens, B De Baets, L Van Hoorebeke, J Van Acker
Investigations into the use of Maleic Anhydride/Sodium Hypophosphite as a Wood Modification Process
2020 - IRG/WP 20-40891
The formation of crosslinked bonds between wood constituents is believed to be an effective way to stabilize wood against wet conditions. The possibility to use maleic anhydride (MA) combined with sodium hypophosphite (SHP) as crosslinking agents was studied, using Scots pine sapwood and a model compound. The modified wood showed weight gain and bulking effect after treatment and subsequent Soxhle...
I Kim, D Jones, O Karlsson, D Sandberg, O N Antzutkin, F Ullah Shah
Field test methods as long-term aging – report of selective wood properties
2023 - IRG/WP 23-40962
Wood samples from a long-term field test are a valuable compendium of information about the material in the context of its aging processes. In the current work, wood samples from the round-robin test within the ECOMOD project were used as a material for the natural aging process (III and IV class of utility). The research scope was to determine selected properties of this wood which can be partial...
W Perdoch, M Benc, B Mazela, A Szulc, J Cegiela
New wood-modification process based on grafted urethane groups: Durability of carbamamylated Scots pine (Pinus sylvestris L.) wood
2023 - IRG/WP 23-40974
Substituting commonly used toxic preservatives with wood modification treatments can make the wood material less prone to water and moisture uptake. This approach favours a more sustainable protection of wood against biodegradation. In this study, Scots pine sapwood was full-cell impregnated with an aqueous solution of urea (30%), dried at 40°C for 24h, and subsequently heat-treated at 150°C for...
C-F Lin, O Myronycheva, O Karlsson, D Jones, D Sandberg
Exploring bio-based chemicals in the residual stream from the thermal wood modification process
2024 - IRG/WP 24-30799
Numerous chemical-free processes have emerged in the wood processing industry to enhance the durability and optimize the service life of wooden elements exposed to exterior conditions. One such method, the hygrothermolytic modification process, patented as FirmoLin®, represents an industrial treatment for thermal modification of wood. This involves subjecting solid wood to a pressurized unsaturat...
R Herrera, W Willems, W Pajerski, A Selmanović, A Sandak
Revealing the degradation process of Moso bamboo (Phyllostachys edulis) by different decay fungi
2025 - IRG/WP 25-11060
Moso Bamboo (Phyllostachys edulis) is the main bamboo species for engineering; however, it is highly susceptible to various fungi during use. In this study, four prevalent decay fungi, including two brown rot fungi and two white-rot fungi, were used as the test fungi to investigate the changes in structure and chemical composition of Moso bamboo samples at different incubation times in order to be...
J Xue, D Cui, M Zhou, J Cao
Decay resistance of thermally modified Eucalyptus grandis in closed and open systems
2025 - IRG/WP 25-30815
Thermal modification has been successfully used to improve the durability of Eucalyptus wood from fast-growing forests. Although it is the most common type of modification process, there are some fields for studies on thermally modified wood, particularly about the comparison between processes in closed and open systems. This work aimed to analyse the effect of thermal modification in closed and o...
D C Batista, A C Oliveira Rupf, M Wentzel, C Brischke, H Militz
Mineral-wood composites with improved fire properties and durability prepared through MgCO3-based mineralization
2025 - IRG/WP 25-30823
New mineral-wood composites that demonstrate improved fire properties and higher resistance to selected fungi have been prepared using an environmentally-friendly mineralisation process involving impregnation with an aqueous magnesium acetoacetate solution. MgCO3-based compounds are formed in situ, deep within the wood’s structure. We show that the new mineralisation method overcomes wood’s lo...
A Pondelak, N Knez, S D Škapin, M Humar, A S Škapin
Process Development in Continuous Wood Densification and the Influence of Ionic Liquids on Set-Recovery and Mechanical Properties
2025 - IRG/WP 25-30827
The densification of wood significantly enhances its mechanical properties, making low-density species more viable for high-performance applications. However, challenges such as set-recovery (SR) and production speed hinder large-scale adoption. This study investigates continuous surface densification using a custom-built belt press and examines the effect of chemical pre-treatment with ionic liqu...
D Jones, A Scharf, B Neyses, D Sandberg
Investigation of Impregnation Factors for Biomass-Based Phenol-Formaldehyde Resins
2025 - IRG/WP 25-41044
This study investigates the impregnation factors affecting the treatment of wood with biomass-based phenol-formaldehyde (PF) resins, such as impregnation methods, resin properties, and setting parameters like time and pressure. The goal is to ensure effective resin penetration into the wood cell wall structure, thereby enhancing wood durability and mechanical properties. Previous literature has la...
Y-C Huang, T-H Lin, P-Y Kuo
Durability Enhancement of US Hardwoods for Use in Open Trailer Decks
2025 - IRG/WP 25-41048
Apitong, a tropical hardwood derived from endangered species within Dipterocarpus genus, has long been used as a decking material for open flat-bed and lowboy trailers in the U.S. However, as more Dipterocarpus species are classified as endangered and critically endangered by International Union for Conservation of Nature (IUCN) due to the declining population of Apitong trees, there is a growing ...
X Xie, X Wang, G Kirker, C A Senalik