IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 58 documents. Displaying 25 entries per page.


Durability of surface preserved wood particle boards submitted to atmospherical influence
1995 - IRG/WP 95-40039
The worldwide problem of the continuously growing deficit of high quality natural wood material has caused the attempts of many research workers to find effective composites such as wood particle boards (WPBs) for replacing the massive wood for constructive purposes, depending on where the boards are exploited - in the open or under a shed, they are submitted to various climatic factors such as he...
L Valcheva


Stability of bifenthrin in a commercial phenol-formaldehyde plywood glue
2003 - IRG/WP 03-30311
Liquid phenol formaldehyde (PF) glue mixes used for plywood manufacture are strongly alkaline. At this pH insecticidal additives may not be stable for long periods. In order to establish practical working life of the synthetic pyrethroid insecticide, bifenthrin, in liquid PF glues the concentration of bifenthrin in the glue mix was measured under laboratory conditions over a 24 hour period. Glu...
M J Kennedy, P A Collins, R D Vella


Leaching performance, decay and termite resistance of wood treated with boron compounds incorporated with phenol-formaldehyde resin
2009 - IRG/WP 09-30503
A resol-type phenol-formaldehyde (PF) resin was synthesized and designed to penetrate wood incorporated with boron compounds in order to immobilize boron in wood. The leaching performance, decay and termite resistance of treated wood was investigated. Three kinds of boron compounds, that is, boric acid (BA), borax (BX) and disodium octaborate tetrahydrate (DOT), were selected to mix with PF and tw...
Liping Yu, Jinzhen Cao


Properties of strand board bonded with ammonium pentaborate (APB) modified phenol formaldehyde resin
2009 - IRG/WP 09-40455
Ammonium pentaborate (APB) is combined with phenol formaldehyde (PF) resin in this study to develop a high-performance wood-based composite. The effect of APB and its combination with polyethylene glycol (PEG) on the physical, mechanical properties as well as formaldehyde emission of strand board were tested and compared with disodium octaborate tetrahydrateand (DOT) and zinc borate (ZB). The resu...
Wei Gao, Jinzhen Cao


Fungal decay resistance and mechanical properties of plywood panels made from maritime pine (Pinus pinaster) and bonded with cornstarch-quebracho tannin-phenol formaldehyde adhesive
2010 - IRG/WP 10-40490
The aim of this work is to demonstrate the performances of cornstarch-quebracho tannin-based resins designed as adhesive in the plywood production. In this way, the cornstarch and quebracho tannin was introduced in the classic adhesive formulation in order to supply a part of phenol-formaldehyde (PF). In order to evaluate the mechanical performances of optimal cornstarch-quebracho tannin-PF, plywo...
F Charrier, A Moubarik, A Allal, A Pizzi, B Charrier


Effect of P/F ratio, PF concentration and treating method on boron leaching from wood treated with PF modified boron compounds
2011 - IRG/WP 11-30559
In order to immobilize boron in wood, three kinds of resol-type phenol-formaldehyde (PF) resin with different P/F ratios were synthesized in laboratory and incorporated with three types of boron compounds to treat wood. The used boron compounds included boric acid (BA), borax (BX) and disodium octaborate tetrahydrate (DOT). The leaching test of boron from wood blocks was performed according to the...
Liping Yu, Jinzhen Cao


Termite resistance of wood impregnated with phenol-formaldehyde (PF) modified boron compounds
2012 - IRG/WP 12-30604
In order to investigate the effect of phenol-formaldehyde (PF) modified boron compounds on termite resistance of two main plantation-grown wood species, namely, Masson pine (Pinus massoniana Lamb.) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), laboratory termite tests and field tests were carried out according to AWPA standard E1-97 and AWPC protocols/2007. Different concentrations of b...
Jinzhen CAO, Liping YU, Xuexiang HE


Curing kinetics of nano cupric oxide (CuO) modified PF resin as wood adhesive: Effect of surfactant
2013 - IRG/WP 13-40620
The effect of nano cupric oxide (CuO) in combination with surfactants on the curing kinetics of phenol formaldehyde (PF) resin, as well as the bonding strength of plywood prepared using the modified resin were investigated in this study using dynamic and isothermal differential scanning calorimetry (DSC). The result showed that the incorporation of nano CuO along with alkane surfactant made in the...
Wei Gao, Guanben Du


Dynamic mechanical analysis (DMA) of nano cupric oxide (CuO) modified aqueous phenol formaldehyde (PF) resin
2014 - IRG/WP 14-40654
Phenol formaldehyde (PF) resins, modified by nano CuO incorporating alkane surfactant and polyvinyl alcohol (PVA) 17-99, were analyzed by dynamic mechanical analysis (DMA). The mechanical properties of its bonded plywood including tensile strength, modulus of rupture (MOR), modulus of elasticity (MOE) and shear strength under five test conditions were evaluated. Results indicated that the incorpor...
Wei Gao, Guanben Du


Penetration of phenol formaldehyde (PF) resin into beech wood studied by light microscopy
2015 - IRG/WP 15-20558
In this study, we examined the distribution and penetration depth of phenol-formaldehyde (PF) resin into wood specimens by light microscopy (LM). Two PF resins from different producers, of concentrations 9, 18 and 27 wt % in water, were vacuum impregnated into European beech wood (Fagus sylvatica) blocks of 15x25x50 mm³. The presence of chemical agent in the wood was carried out by way of their i...
V Biziks, S Bicke, H Militz


Decay resistance of beech wood and plywood treated with different type of phenol-formaldehyde (PF) resins
2016 - IRG/WP 16-40717
In this study treatment of beech and poplar wood veneers with (PF) resin industrial scale and screening tests of nine different phenol-formaldehyde (PF) resins were made. Specifically, the effect of different phenol-formaldehyde (PF) resin types on the resistance of beech wood against brown- and white-rot fungi was evaluated. Criteria for selection of optimal (PF) resin were based on minimum WPG ...
V Biziks, S Bicke, H Militz


Lignin-Based Adhesive for Engineered Wood Products
2016 - IRG/WP 16-50319
Lignin as a naturally occurring polyphenolic compound has an excellent potential to replace petroleum-based phenol in formulation of phenol-formaldehyde adhesive that are used in manufacturing of engineered wood products. However, there are three major obstacles in application of polymeric lignin as phenol replacement: 1) low reactivity toward phenol, 2) high molecular weight, and 3) high polydisp...
I Kalami, M Arefmanesh, E Master, M Nejad


Improvement of wood decay and termite durability resulting from combined treatments based on borax/phenol-formaldehyde impregnation followed by thermal modification
2019 - IRG/WP 19-40871
This study determined the factors influencing the boron content after leaching of pine blocks impregnated with aqueous solution of phenol-formaldehyde (PF) resin with or without borax and subjected to heat treatment by response surface methodology. An experimental design permits to analyze the effects of heat treatment temperature (150, 185 and 220°C), curing time (5, 12, 5 and 20 hours), resin c...
S Salman, M-F Thevenon, A Petrissans, S Dumarcay, P Gerardin


Longterm Performance of Treated Timbers in Marine Exposures
2020 - IRG/WP 20-10969
The performance of preservative-treated or modified woods in marine exposures was evaluated at test sites in Newport, Oregon, USA and Brisbane, Queensland, Australia. All samples have exhibited excellent performance at the Newport, Oregon site, while attack was more aggressive at the sub-tropical Brisbane site. Acetylated wood as well as samples treated with 7.3% chromated copper arsenate (CCA-T...
M Konkler, A R Zahora, J Norton, J J Morrell


Performance of resin-treated solid wood and laminated veneer lumber (LVL) under marine conditions
2021 - IRG/WP 21-10973
Wood is a traditional building material in the marine environment, where it is exposed to extremely harsh conditions. Most of the indigenous softwood and hardwood species in Europe are not durable against attack by marine organisms. Recently, wood modification has been considered as an alternative to protect non-durable wood species under use class (UC) 5 (EN 335, 2013) conditions. The present stu...
L Emmerich, C Brischke, S Bicke, H Militz


Phenol formaldehyde modification and termite resistance under laboratory testing
2022 - IRG/WP 22-40952
The development of phenol formaldehyde (PF) resins as a means of impregnating solid wood is one that has been explored for several decades, both in terms of conventional impregnation processing (Impreg) or compressional impregnation (Compreg). However, it is only recently with advances in processing conditions that the method truly affords a means of achieving conventional modification for solid t...
L Nunes, A Pitman, M Duarte, B Stefanowski, D Jones


Long-term Performance of Treated Timbers in a Sub-tropical Marine Exposure
2023 - IRG/WP 23-11015
The long-term performance of preservative-treated and modified wood in marine exposures was assessed in Brisbane, Queensland, Australia. This report describes the final destructive assessment of the surviving Australian panels after 11 years of exposure. This site presents the potential for attack by shipworms (likely Bankia spp.), pholads (Martesia striata), Limnoria and Sphaeroma terebrans. Mos...
E L Galore, J Norton, A Zahora


Resistance of phenol formaldehyde impregnated beech (Fagus sylvativa L.) LVL against biodegradation in soil contact
2023 - IRG/WP 23-40965
Alternatives to preservative impregnation are emphasized in Germany and other European countries. Even though these treatments significantly improve wood's resistance to decay, they often do not have a beneficial impact on the dimensional stability. One alternative product, which may be used in ground contact for items like poles and railway sleepers, could be beech (Fagus sylvatica L.) laminated ...
M Slabohm, C Brischke, S Bicke, H Militz


Physical and biological properties of albizzia waferboards modified with cross-linking agents
1995 - IRG/WP 95-40043
Chemically-modified low-density waferboards with cross-linking agents were produced using a fast-growing species of hardwood albizzia (Paraserienthes falcata Becker) as a raw materials and isocyanate resin as a glue adhesive. For the chemical modification, the vapor-phase formalization of the boards and the pad-dry-cure treatment of wafers with cross-linking agents were employed. The vapor-phase f...
S Yusuf, Y Imamura, M Takahashi, K Minato


Oxygen index levels and thermal analysis of wood treated with melamine-formaldehyde-boron combinations
1997 - IRG/WP 97-30135
Melamine formaldehyde (MF) resin was impregnated into scots pine (Pinus sylvestris L.) specimens with aqueous solutions of 5, 10 and 20% concs. Boric acid (BA) and borax (BX) was added to MF resin at the concentration levels of 0.25, 1.00 and 4.70% to each level of resin concs. BA and BX mixture was prepared at the 5:1 (w/w) ratio considering resultant pH of solutions and better fire resistance. U...
M K Yalinkilic, W-Y Su, Z Demirci, E Baysal, M Takahashi, S Ishihara


Combined effects of the treatment of wood with formaldehyde
1978 - IRG/WP 3117
Treatment of fibrous materials with reagents in a vapor phase is neither new nor unique. Numerous examples exist in literature of vapor phase experiments on cellulose fibers and fabrics, and on wood. For many years the textile research and industry have used vapor phase processes for the treatment of textiles. The chemical modification of cellulose is based on different types of reactions e.g. est...
M Stevens, J Schalck


A laboratory soil-block decay evaluation of plywoods edge-treated with preservatives
1982 - IRG/WP 2174
Preservative-treated plywood used under conditions or severe decay hazard frequently has its original, or cut edges, protected by the application of a field-cut preservative. This study uses a laboratory test method to compare the efficacy of four commercial preservative treatments against two commonly occurring brown-rot fungi. The results are not meant to indicate the service life of such treate...
R S Smith, A Byrne


Thermotolerant mould growth in dehumidifier kilns in New Zealand
1996 - IRG/WP 96-10169
Growth of Aspergillus fumigatus and Paecilomyces variottii is common on wood dried in dehumidifier kilns that operate within a temperature range of 35-55°C. Aspergillus fumigatus causes an unacceptable blue / grey discolouration of the woods surface and prolonged exposure to spores during handling of mouldy wood can cause health problems amongst timber workers. A survey of dehumidifier kiln opera...
R N Wakeling, J G Van der Waals


Dimensional stability, biological resistance, and mechanical properties of phenol-resin-treated particleboard
1990 - IRG/WP 3622
Particleboards were treated with a low molecular-weight phenol-formaldehyde (PF) resin and their enhanced properties were evaluated. Besides dipping of particles in aqeous solutions of resin, and spraying of resin solutions before spray of the conventional phenol-formaldehyde resin for adhesive binder, one step treatment by spraying of the mixture of the low molecular-weight resin and the adhesive...
Y Imamura, H Kajita


Biological resistance of phenol-resin treated wood
1990 - IRG/WP 3602
Biological resistance of PF (phenol formaldehyde resin) - treated wood has been tested in relation to the resin properties, wood species and biological factors. When tested using water-soluble PF (mol. wt. 170), ca. 10% RI (resin impregnation) was enough to suppress the decay of Japanese cedar (Cryptomeria japonica) and western hemlock (Tsuga heterophylla) blocks exposed to Tyromyces palustris (br...
M Takahashi, Y Imamura


Next Page