IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 3391 documents. Displaying 25 entries per page.


Removal of heavy metals from treated wood using biological methods
2005 - IRG/WP 05-50226
Heavy metals were removed from wood treated with copper based preservatives using brown-rot fungus Fomitopsis palustris. The amount of effective elements removed by treatment methods was examined. The relationship between oxalic acid concentration and the amount of heavy metals removed from each treated wood was also investigated. The relationship between fungus weight and removal rate was also in...
Dong-won Son, Dong-heub Lee


Pyrolytic treatment of CCB treated wood
2005 - IRG/WP 05-50224-23
Environmental problems caused by the toxicity of metallic elements of the preservative occur when treated wood comes to end of use. In the experiment, CCB treated wood chips were pyrolysed at various temperatures and residence times and the behaviour of boron, chromium and copper was observed. The three elements are almost entirely retained in the charcoal. There is no influence of final tempera...
J F Collin, C G Jung, J M Romnée, J Delcarte


Available iron promotes brown rot of treated wood
1992 - IRG/WP 92-1526
Exposure of treated wood blocks to rusting iron increased the toxic threshold of chromated copper arsenate and ammoniacal copper arsenate to a brown-rot fungus Leucogyrophana sp. This supports the hypothesis that the movement of iron ions into wood contributes to the unexpectedly high decay rate of treated wood at the stake test site at Westham Island BC. To what extent this phenomenon may occur e...
P I Morris


Production of treated wood in Brazil in 1984
1986 - IRG/WP 3357
The data of the Brazilian production of sleepers, poles, crossarms, fence posts and other commodities are given for the year of 1984....
M S Cavalcante


Current models used by the European Health Authorities to evaluate the volatilization of active ingredients from treated wood used inside dwellings. A case study: Volatilization of azaconazole and propiconazole from treated wood
1990 - IRG/WP 3565
The use of wood preservatives inside houses may result in measurable aerial concentrations of active ingredients. These airborne contaminants may be inhaled by the inhabitants over periods lasting from a couple of days to several months. To assess the potential health hazard of preservative residues in the air, various risk-assessment models have been worked out. Three schemes, currently used by t...
A R Valcke, L Van Leemput


Germination of basidiospores on preservative treated wood after leaching or natural weathering
1981 - IRG/WP 2150
In tests of residual toxic efficacy after leaching or natural weathering, spore germination with Gloeophyllum trabeum has proved to be a less reliable criterion of attack than when used with unaged preservative treatments. Since spores sometimes prove more tolerant than their parent mycelium, their use should be continued....
J K Carey


Leaching of chromium and other cca components from wood-cement composites made with spent CCA treated wood
2000 - IRG/WP 00-50153
Wood cement composites are an attractive option for recycling spent treated wood, since the CCA treatment enhances the physical, mechanical and biological resistance properties of the composite. However, we have noted a higher than normal leaching of chromium from these products and this appears to result from conversion of some of the trivalent chromium to the more leachable and toxic hexavalent ...
D Qi, P A Cooper


Experience with an industrial scale-up for the biological purification of CCA-treated wood waste
1997 - IRG/WP 97-50095
The biological purification of CCA-treated wood waste was tested in co-operation of the BFH and the Italian impregnation plant SoFoMe. Chipped poles were infested with the chromium and arsenic tolerant brown-rot fungus Antrodia vaillantii which can transform in the laboratory ca. 90% of the chromium and arsenic into watersoluble salts. These can be leached to 100-200 ppm residual metal content. Th...
H Leithoff, R-D Peek


Questionnaire on the state of pollution control in the field of wood preservation
1974 - IRG/WP 52
H Willeitner


Developments in wood preservation processing techniques in New Zealand
1980 - IRG/WP 3143
P Vinden, A J McQuire


Environmental behaviour of treated wood in (semi-)permanent contact with fresh or seawater
1998 - IRG/WP 98-50101-20
This study presents a strategy for the environmental toxicity evaluation of treated wood towards the aquatic compartment, using non target water organisms toxicity tests. A lixiviation process is applied on wood (Pinus sylvestris) treated with several wood preservatives formulations. The lixiviation process is carried out in the laboratory with ultrapure water or synthetic seawater. After chemica...
P Marchal, C Martin


Role of Global Cooperation in Wood Protection for Conserving Forest Resources
2007 - IRG/WP 07-50249
The current uses of treated wood are discussed along with the emerging concerns for continued use of these products. The issues of new chemicals, treatments for wood based composites, migration of chemicals from treated wood, and the disposal of these products at the end of their useful life are all outlined. The potential for the IRG to serve as the focus for research discussion as well as coll...
J J Morrell, G Deroubaix


Laboratory experiments on aerial emissions from wood treated with wood stains
1993 - IRG/WP 93-50001-06
Due to the actual environmental interest in wood preservation, a series of experiments was carried out on the emission of biocides from treated wood. The research focussed on the volatilization of 5 biocides from boards treated with wood preservative finishes containing dichlofluanide (DCF) azaconazole (AZA), pentachlorphenol (PCP), iodopropynylbuthylcarbamate (IPCB) and tributhyltinoxide (TBTO). ...
G M F Van Eetvelde, M Stevens


Disposal of Pressure Treated Wood in Construction and Demolition Debris Landfill
2005 - IRG/WP 05-50235
Pressure treated wood is often disposed in landfills in the US, very frequently in construction and demolition (C&D) debris landfills. C&D debris disposal facilities in many states are not equipped with liner systems to protect underlying groundwater. In this paper, issues associated with the disposal of metal-containing treated wood in C&D debris landfills are discussed. C&D de...
T G Townsend, B Dubey, J Jambeck, H M Solo-Gabriele


Disposal of CCA treated waste wood by combustion - An industrial scale trial
1996 - IRG/WP 96-50068
Totally 272 m³ (62.7 t) of CCA treated utility poles were chipped and incinerated at Jalasjärvi Gasification Plant. In average the whole batch of chips contained 57 kg of elementary copper, 95 kg chromium and 76 kg arsenic. During the 56 h combustion trial the measured arsenic emission to the air was 76 g in total. Copper and chromium emission was less than 1 g. The condensing water from the coo...
A J Nurmi


Performance of treated and untreated sawn fence posts of Scots pine and Norway spruce
2000 - IRG/WP 00-30247
Sawn fence posts are a rather important product and the objective of this trial was to assess their durability. In 1985 a field trial with treated and untreated fence posts of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) was set out at the test field in Ultuna, Uppsala, Sweden. The posts had a dimension of 75 x 100 x 1400 mm3. The preservatives applied were a CCA, a...
Ö Bergman


The Effect of Soil pH on the pH of Treated Southern Pine in Ground Contact after 12 Months
2011 - IRG/WP 11-50281
Southern pine samples treated with soluble and particulate copper solutions were subjected to three soils that had been amended to provide acidic, neutral and alkaline conditions. Wood pH was measured prior to, and after 6 and 12 months after being placed in the soil to determine the effect of soil pH on wood pH....
L Jin, C Schauwecker, C Vidrine, P Walcheski, A Preston


The effect of treatment temperature on the biological performance of CCA treated wood
1990 - IRG/WP 3624
Birch and Scots pine sapwood blocks were treated with several concentrations of CCA at three different temperatures: 5, 20 and 35°C. The treated wood was maintained at the appropriate temperature for the fixation period. Leached and unleached samples were then exposed in a soft rot monoculture test using Chaetomium globosum and a brown rot monoculture test using Coniophora puteana. The treatment ...
S M Gray


Laboratory simulation of leaching from creosote treated wood in aquatic exposures
2000 - IRG/WP 00-50157
Creosote has a long history of use as a preservative particularly in industrial wood products, but its use has come under increasing scrutiny as a result of concerns about its potential effects on aquatic and terrestrial non-target organisms. Despite its long use, there is relatively little data on the rates of creosote loss in many exposures. In this report, we describe small scale leaching tank ...
Ying Xiao, J Simonsen, J J Morrell


Visualization of inorganic element distribution in preservative treated wood by SEM-EDXA
2001 - IRG/WP 01-40208
SEM-EDXA was found to be an effective way of visualizing inorganic element distribution in wood as it was possible to examine some inorganic elements at the same time and map the concentration differences in color. Japanese cedar sapwoods were impregnated by vacuum treatment with CuAz or by pressure treatment with CCA preservatives and then distribution of Cu, Cr and As elements in wood were exami...
H Matsunaga, R Matsumura, K Oda


Effect of EDTA on removal of CCA from treated wood
2002 - IRG/WP 02-50182
Since substantial amounts of chromated copper arsenate (CCA) remain in the wood for many years, the disposal of CCA-treated wood causes escalating environmental concerns. Additionally, wood waste is generated when treated wood is put into service, for which environmentally benign disposal technologies need to be developed. Novel approaches to remove copper, chromium, and arsenic from CCA-treated w...
S N Kartal


In service performance of wood sound abatement barriers
2024 - IRG/WP 24-41006
Sound abatement barriers made form treated hem-fir in service near Vancouver, Canada were inspected after about 10-12 years in service. The barriers appeared in good condition and no boards were to the point of needing replacement. The sound abatement decibel readings at all locations indicate they perform as well as concrete barriers and exceed the 5 dBA regulatory requirement for noise reduction...
S Kus, D Wong, R Stirling


Investigation of some technical properties of heat-treated wood
2003 - IRG/WP 03-40266
The objective of this study was to investigate some technical properties of heat-treated wood. Wood heat-treated according to a process intended for wood in above-ground end-uses (European hazard class 3) was subject to the following: · A delamination test according to EN 391 with glulam beams made of heat-treated pine (Pinus sylvestris) and spruce (Picea abies) laminations, assembled with PR...
C Bengtsson, J Jermer, A Clang, B Ek-Olausson


Biological resistance of phenol-resin treated wood
1990 - IRG/WP 3602
Biological resistance of PF (phenol formaldehyde resin) - treated wood has been tested in relation to the resin properties, wood species and biological factors. When tested using water-soluble PF (mol. wt. 170), ca. 10% RI (resin impregnation) was enough to suppress the decay of Japanese cedar (Cryptomeria japonica) and western hemlock (Tsuga heterophylla) blocks exposed to Tyromyces palustris (br...
M Takahashi, Y Imamura


Testing a diffusion and reaction model for the leaching of CCA components from unfixed CCA-treated wood
2002 - IRG/WP 02-50193
A previously described physical model applicable to the leaching of any substance undergoing a first-order fixation reaction with wood is applied to the leaching of CCA components from unfixed wood. Using this model and laboratory leaching experiments with small wood samples immersed in water, the diffusion coefficients and reaction rate constant of Cr6+, total Cr, Cu and As in unfixed CCA-treated...
L Waldron, P A Cooper


Previous Page | Next Page