IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 24 documents.


Management of the wood and additives wastes in the wood processing industries: Problematics and technical answers review
1996 - IRG/WP 96-50073
Management pathways for pure wood subproducts are well known and used; but as soon as additives like preservatives, glues, varnishes or coatings are present within the wood wastes, their disposal or valorization becomes more tricky. The different kinds of mixed wood wastes of the wood processing industries, from the sawmill to the furniture manufacture, are identified herewith and their diversity ...
S Mouras, G Labat, G Deroubaix


Possible regulatory status of treated wood waste and implications
1998 - IRG/WP 98-50101-07
In relation to the European Community or the French regulations, treated wood waste can get two different regulatory status: <<recycled product or fuel>> or <<waste>>. Then, into the waste status, two categories are possible for these residues: <<domestic waste and assimilated>> or <<hazardous waste>>. These different status and categories are import...
G Deroubaix


Fire resistance of Alder wood treated with some chemicals. Part II. Effect of Other Chemicals on the Combustion Properties
2002 - IRG/WP 02-40235
Samples from alder wood (Alnus glutinosa (L.) Gaertn. subsp. barbata (C.A.Mey) Yalt.) were impregnated according to ASTM D 1413-88 with boron compounds (boric acid, borax, sodium perborate), vinyl monomers (styrene, methyl methacrylate), Tanalith-CBC, Phosphoric acid, Vacsol, Immersol, Polyethylene glycole (PEG-400) and their mixed solutions of chemicals in order to determine their combustion pro...
A Temiz, Ü C Yildiz


Disposal of CCA treated waste wood by combustion - An industrial scale trial
1996 - IRG/WP 96-50068
Totally 272 m³ (62.7 t) of CCA treated utility poles were chipped and incinerated at Jalasjärvi Gasification Plant. In average the whole batch of chips contained 57 kg of elementary copper, 95 kg chromium and 76 kg arsenic. During the 56 h combustion trial the measured arsenic emission to the air was 76 g in total. Copper and chromium emission was less than 1 g. The condensing water from the coo...
A J Nurmi


Recycling of impregnated timber: Part 2: Combustion trial
1999 - IRG/WP 99-50132
Totally 270 m3 (61,3 t) of CCA impregnated wood was chipped and incinerated at the combustion plant of Jalasjärvi. After the normal gas cleaning venture scrubbers were tested. After the trial a metal balance was calculated. Ash was treated at the copper smelter of Outokumpu Harjavalta Metals Oy. Condensate waters were transfered to the Outokumpu&apos;s CCA production plant and utilized by the...
L Lindroos


Health hazards and environmental aspects when using Cu-HDO-containing wood preservatives in vacuum pressure plants
1993 - IRG/WP 93-50001-11
Apart from the biological efficacy of wood preservatives, the health and environmental aspects concerning the utilisation of wood preservatives, the use of treated timber and the disposal of impregnated wood are of high significance today. Therefore, information on a possible aerial concentration of wood preservatives, on the mobility of active substances in soil leached from treated timber in ser...
W Hettler, S Breyne, M Maier


Traitement des matériaux lignocellulosiques en présence des composés halogénés (Risques toxiques des produits de combustion)
1995 - IRG/WP 95-50040-17
From the point of view of the combustion products toxicity, the highest environmental hazard comes from the combustion of materials creating toxic products such as dioxins and dilbenzofurans. 95% of these are formed during incineration of different materials. The aromatics result essentially from the products of paper industry and from wood treatment. Formation of halogenated products during the c...
I Surina, M Slimak, S Vodny, A Périchaud, K Balog


Report on the burning of wood treated with wood preservatives containing copper, chromium and arsenic
1976 - IRG/WP 379
Mixtures of copper, chromium and arsenic salts are used extensively in the UK to preserve timber. This report is concerned with the fate of these metals when timber treated with these salts is burned. A large percentage of the arsenic present in the timber is shown to be volatilised during combustion and the potential environmental implications of this are assessed by comparison with the release o...
A J Dobbs, C Grant


Equilibrium distribution of toxic elements in the burning of impregnated wood
2001 - IRG/WP 01-50172
The current work focuses on predicting the behavior of arsenic, chromium, and copper in the burning of impregnated wood. A theoretical method is used to study the chemistry of the system, with special interest directed towards the vaporization tendency of the potentially toxic elements. The core of the study is the global equilibrium analysis that simultaneously takes into consideration all chemic...
K Sandelin, R Backman


Risk assessment of energetic valorization of treated wood - wooden recycling
1996 - IRG/WP 96-50072
The most useful method for the valorization of wood wastes and wooden wastes is energetic valorization. In France the percentage of wood treated by antisaptain products is around 30%. Currently with the growing regulation, there is a need for cleaner methods and technology to allow sustainable valorization. The preservatives concerned are common organochlorine compounds (NaPCP) less used nowadays ...
G Deroubaix, P Marchal, G Labat


Combustion properties of Alder wood treated with some new environment friendly natural extractives. Part 1. Effect of Natural Tannins on the Combustion Properties
2002 - IRG/WP 02-40234
Powders of the brutia pine bark, sumach leaves, acorn, gall-nut and boric acid and borax which are known as potential environment friendly wood preservatives were impregnated according to ASTM D 1413-88 in order to determine their combustion properties. A commercial treatment compound, Tanalith-CBC, was also used for comparison. The results indicated that the natural extractives did not have an...
Ü C Yildiz, A Temiz, E D Gezer, S Yildiz


Emissions from the combusting of boron and fluoride containing wood
1995 - IRG/WP 95-50040-18
The combustion properties of waste wood and wood residues containing wood preservatives were investigated in several test series after having been blended with untreated wood at a ratio of 1:4. The results for CFB, SF and boric salt show that, provided an optimized combustion, the concentrations of the stack pollutants correspond approximately with those found for untreated wood. Only during the c...
T Salthammer, H Klipp, R-D Peek


Scandinavian experience – 25 years’ experience in transforming used creosoted wood into bio-fuel
2005 - IRG/WP 05-50224-18
Swedish experiences show that the best and most efficient way to handle the creosoted wood waste is through combustion. The preparation of creosoted waste wood to fuel chips at IQR AB’s plant in Trollhättan is done by splinting the wood according to a special method. Mainly railroad sleepers, but also other wooden commodities, from all over Europe are delivered to the plant. The wood material i...
T Karlström


Emissions from the combustion of wood treated with organic and inorganic preservatives
1994 - IRG/WP 94-50019
Wood waste and industrial wood residues often contain various preservatives. The waste management for these residuals can be recycling, deposition or combustion. Among the three possibilities, combustion seems to be the most efficient way of usage. To obtain more information about the emission properties of treated wood, different materials were incinerated in different furnaces after mixing with ...
T Salthammer, H Klipp, R-D Peek, R Marutzky


Formation of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) during the combustion of impregnated wood
1995 - IRG/WP 95-50040-19
Wood waste and industrial wood residues often contain various preservatives. The waste management for these residuals can be recycling, deposition or combustion. Among the three possibilities, combustion seems to be the most efficient way of disposal. To obtain detailed information about emissions of organic compounds with environmental impact, especially polychlorinated dibenzo-p-dioxins (PCDD) a...
T Salthammer, H Klipp, R-D Peek


Fire retardant treated wood and plywood: A comparative study Part III. Combustion properties of treated wood and plywood
2002 - IRG/WP 02-40236
The fire retardant treated and untreated plywood and alder wood samples were prepared with the aim to investigate the effects of the way of treatment on the combustion properties. Alder wood was used for the preparation of plywood. Boric acid and borax were used as fire retardant. The plywood samples were impregnated by using three different methods; first group samples were impregnated by soaki...
S Çolak, A Temiz, Ü C Yildiz, G Çolakoglu


Silicic acid-Boric acid complexes as wood preservatives
2001 - IRG/WP 01-30273
A silicic acid monomer aqueous solution (SAMS) or colloidal silicic acid solution (CSAS) was combined with various metal compounds or boric acid. Agents where SAMS or CSAS was combined with boric acid gave good protection against decay caused by the brown-rot fungus Fomitopsis palustris, the treated wood (Cryptomera japonica D. Don) specimens after the leaching test maintained a high resistance to...
H Yamaguchi


Recycling of impregnated timber: Part 1: Crushing, combustion plants, amount, costs and logistics
1999 - IRG/WP 99-50131
The object of the recycling research was to determine the technical and economical requirements of recycling of CCA-impregnated wood. The safest and most effective way is to crush impregnated timber in a stationary crushing plant where the reclaiming of dust is managed. The combustion techniques designed to burn solid Finnish combustible matter are applicable to burn crushed impregnated timber. Be...
T Syrjänen


CCA-treated Wood Disposed in Landfills and Life-cycle Trade-Offs With Waste-to-Energy and MSW Landfill Disposal
2005 - IRG/WP 05-50231
CCA-treated wood as a solid waste is managed in various ways throughout the world. Although some wood is combusted for the production of energy in the U.S., more often than not, CCA-treated wood is disposed in landfills. In other countries, wood, often including CCA-treated wood, is combusted for the production of energy. This paper is presented in two parts. Part I evaluates the impact of CCA-tre...
J Jambeck, K Weitz, T G Townsend, H M Solo-Gabriele


Determination of thermal degradation of isothiazolone treated wood
1997 - IRG/WP 97-30154
Wood treated with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one was the subject of thermal degradation study. The study included burning isothiazolone treated wood under various temperatures with and without oxygen. The result showed that no harmful combustion products, such as polychlorinated dibenzo-p-dioxins, polychlorinated dibenzo-p-furans and polychlorinated biphenyls, were detected. These fin...
Bing Yu


A Critical Review and Survey of the US Wooden Pallet Industry: Focusing on Market Segmentation & N. American Trends
2011 - IRG/WP 11-40545
This paper reviews the history and current and predicted future use values in N. America. Included in this work is historical data on rationality and wood species used to manufacture wooden pallets in the USA and an ongoing current market survey sent to the 1000 largest manufacturers and re-manufacturers in the USA based on SIC Code 2448(Standard Industrial Code Classification). Although CHEP, the...
M H Freeman


Combustion and thermal characteristics of Korean wood species
2016 - IRG/WP 16-40727
This study examined the combustion and thermal characteristics of domestic woods in Korea. Wood was confirmed by a cone calorimeter according to the KS F ISO 5660-1 standard. The combustion properties of the wood were measured in terms of the heat release rate (HRR), total heat released (THR), mass lose rate (MLR), and ignition time (time to ignition; TTI). Also, the thermal properties were measur...
Huyun Jeong Seo, Jung-eun Park, Dong Won Son, Won-Joung Hwang


Effects of Borax and Boric Acid as Fire Retardants on the Resistance of Pterygota macrocarpa Wood to Fire Tests
2022 - IRG/WP 22-30770
The combustible nature of wood as a building material, when exposed to hazards of fire underscores the reason for fire retardant treatments. Pterygota macrocarpa wood is commonly used by builders in Nigeria for roof and other structural applications. Therefore, this study was carried out to assess the effect of Borax and Boric acid on the fire-retardant properties of P. macrocarpa wood. Wood sampl...
J M Owoyemi, O Apogbona, T O Akinwamide


Multi-scale Experimental Study on Self-sustained Smouldering of CCA-treated Timber Poles
2023 - IRG/WP 23-40988
While it is accepted that appropriate treatment with chromated copper arsenate (CCA) will extend the design life of wood markedly, there are concerns regarding the effect of treatment on fire performance. Smouldering combustion in CCA-treated timber infrastructure can self-sustain, destroying the timber elements, as the chromium and copper present in the CCA can act as catalysts of the smouldering...
W Wu, L Yerman, J J Morrell, F Wiesner