Your search resulted in 457 documents. Displaying 25 entries per page.
Effect of furfurylation treatment on the performance of three Canadian wood species
2022 - IRG/WP 22-40925
The demand for exterior wood siding is stagnating in North America, partly due to the perception of consumers, architects and contractors regarding their durability and maintenance. Improving attributes such as the dimensional stability of wood is therefore necessary to make it more attractive to consumers. This project aims to assess the performance of Canadian species; white spruce (Picea glauca...
G Boivin, D Schorr
Environmentally Friendly Wood Modification based on Tannin-Furfuryl alcohol - Effect on stabilisation, mechanical properties and decay durability
2022 - IRG/WP 22-40929
Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-f...
M Mubarok, E Azadeh, F O Akong, S Dumarçay, A Pizzi, C Charbonnier-Gérardin, P Gérardin
Comparative study of the properties of silicate coatings with different mineral pigments (titanium dioxide, iron (III) oxide, copper (II) oxide) on the surface of wood
2022 - IRG/WP 22-40936
Silicate coatings are attractive alternatives to conventional organic-based coatings for wood protection. In this work, silicate coatings were prepared with a potassium silicate binder modified with a methyl siliconate solution, and three types of mineral pigments titanium dioxide, iron (III) oxide and copper (II) oxide. The coatings were applied on beech wood and cured under ambient conditions. T...
A M Cheumani Yona, M Petrič
Effect of nano-particle characteristics and concentration on UV protection of timber: A field exposure test
2022 - IRG/WP 22-40941
Wood has a well-known susceptibility to ultra-violet light degradation, leading to premature replacement. A variety of products have been developed to protect against this damage, but most provide less than 12 months of protection and must be regularly reapplied. Developing improved coatings would help reduce wood losses and reduce maintenance costs. Nano-particles have a variety of attractive pro...
T Yi, J J Morrell
A Comparison of Cross-Laminated Timber (CLT) Floor Panels using Finite Element Analysis and Experimental Fire Testing
2022 - IRG/WP 22-40955
Cross-laminated timber (CLT) is a relatively new timber product and has gained popularity in North America and Europe as a construction material. As a sustainable engineered timber product, CLT offers many advantages over solid wood, concrete, or steel construction. However, the use of timber in medium to high rise buildings is often avoided mainly due to its combustible nature. In this paper, a n...
M Yasir, A Macilwraith, K Ruane
Effect of enzymatic inhibitors on the population of Reticulitermes grassei and their associated microbiota
2023 - IRG/WP 23-11008
Termites are pests that invade urban, agricultural and forest environments worldwide. They are economically important owing to the damage they cause to wood, wood products, building materials, agricultural products and forests. There are many methods for its control, but many of them cause negative environmental effects due to their toxicity. In termites, dietary change or antibiotic treatment may...
S M Santos, M T Troya, F Llinares, P Colina, E García, M Álvarez, L Robertson
Effect of volatile organic compounds produced by wood rotting fungi on mycelial growth
2023 - IRG/WP 23-11023
Microorganisms such as fungi or bacteria produce volatile organic compounds (so-called MVOCs: Microbial Volatile Organic Compounds) as metabolites. Some MVOCs have been found to be biologically active, for example inhibition of spore germination, and when fungi of different species encounter each other, the MVOCs pattern change, suggesting that MVOCs play a role as a mediator for biological intera...
S Horikawa, R Konuma, M Yoshida
Effect of Moisture Cycles and Timber Treatment on the Performance of Screwed Connections
2023 - IRG/WP 23-20694
The impact of moisture in timber structures is associated with the deterioration of timber, and loss of mechanical performance. Methods have been developed to treat timber using chemicals to inhibit deterioration, however, water intrusion has much more immediate effects on the mechanical properties of timber associated with swelling and shrinkage of the wood. The effects of moisture on the mechani...
L Yermán, M Xiao, Z Yan, L-M Ottenhaus
Recent studies into improved fire retardancy of wood undertaken at Luleå University of Technology
2023 - IRG/WP 23-30784
Modern construction is moving more towards engineered wood products, such as glulam and cross-laminated timber (CLT). This increase is driven by the aspiration to deliver high-rise buildings with enhanced environmental profiles and human well-being. This desire to use wood in construction is pushing the need for fire treatments capable of meeting a products service life. However, the use of wood ...
D Jones, C-F Lin, I Kim, E Garskaite, O Karlsson, D Sandberg
Identifying compatible waterborne timber preservatives and fire retardants for use in a VPI system: a practical approach
2023 - IRG/WP 23-30796
To enhance the use and suitability of timber in all applications in both exterior and interior settings, timber typically needs to be treated with a preservative and/or a fire retardant chemical. Combining fire retardants with preservatives into a single treatment process has been a long-term aim of researchers in the timber preservative industry because of the significant logistic and economic ad...
R Robinson, S Meldrum
Effect of impregnation modification treatment on properties of Paraserianthes falcataria wood
2023 - IRG/WP 23-40966
Modification treatment can improve the properties of wood, particularly those of fast-growing species. Paraserianthes falcataria, also known as batai, is a fast-growing species with low wood density. This species has piqued the interest of those involved in industrial wood processing as a promising alternative for construction. The aim of this study is to improve the dimensional stability of batai...
A S Yusoh, A S Boneka, M K Anwar U, S Salim, S H Lee
Investigating the fire properties of a composite material made of MDF-residues, citric acid and sorbitol
2023 - IRG/WP 23-40969
In times of climate change and a shortage of energy and raw materials, it has become apparent, that material reuse of wood in a cascade system can reduce the ecological impact of a material and be cost effective. A new composite material has been developed made from citric acid, sorbitol, water and waste MDF. Not only will there be a material reuse option for waste MDF but due to the small particl...
P T Lewandowski, W Perdoch, E Larnoy, H Militz
Multi-scale Experimental Study on Self-sustained Smouldering of CCA-treated Timber Poles
2023 - IRG/WP 23-40988
While it is accepted that appropriate treatment with chromated copper arsenate (CCA) will extend the design life of wood markedly, there are concerns regarding the effect of treatment on fire performance. Smouldering combustion in CCA-treated timber infrastructure can self-sustain, destroying the timber elements, as the chromium and copper present in the CCA can act as catalysts of the smouldering...
W Wu, L Yerman, J J Morrell, F Wiesner
Effect of incised pattern on flexural strength of CLT
2023 - IRG/WP 23-40993
As a study aimed at developing preservation methods suitable for CLT, investigations have been carried out using “deep penetration treatment”. This treatment method was originally developed as a treatment method for sawn lumber and glulam used as sill members. In the treatment, materials are incised using specially designed blades and immediately sprayed with an oil-based wood preservative. Th...
T Mori, R Takanashi, T Miyauchi, Y Ohashi, S Isaji
Enhanced durability of bio-based materials for green building
2023 - IRG/WP 23-50382
Wood protection technologies provide tools to enhance the durability of bio-based materials for green building. Both wood and related bio-based material are regarded as eminent for green building. It allows to underpin several of the United Nations sustainable development goals and is regarded critical for the Green Deal objectives of the EU. Nevertheless, to enhance the potential it needs to be b...
J Van Acker, L De Ligne, J Vand den Bulcke
Binder-free, fire-resistant, light-weight fiberboard materials encrusted with expandable graphite and borax
2024 - IRG/WP 24-20714
Despite abundant data on innovative fire protection technologies tailored for wood and lignocellulosic materials, the prevailing approach revolves around the formulation of fire retardant solutions employing water-soluble salts, e.g., phosphorus or boron compounds. On the other hand, additives fostering the formation of a char layer during the combustion of lignocellulosic materials as a non-leach...
W Perdoch, W Grześkowiak, B Mazela
Elevated pressure hybrid wood modification: Synergistic effects on durability performance
2024 - IRG/WP 24-20725
The combination of different wood modification technologies to obtain improved performance is increasingly receiving attention in research. In this study, Scots Pine was impregnated with furfuryl alcohol (FFA) in pure aqueous 20, 40 and 60% solution strength without adding any catalyst. In a second step, the FFA was polymerized while simultaneously performing thermal modification in a closed syste...
P Klaas, D Jones
Manufacturing of bamboo hybrids with high strength, superior fire retardancy, and dimensional stability
2024 - IRG/WP 24-30808
Bamboo, renowned for its rapid growth, high strength-to-weight ratio, and eco-friendly attributes, has found extensive use in decorative building materials and glue-laminated beams. However, the inherent challenges of dimensional instability and flammability in natural bamboo restrict its broad application. This research introduces a range of environmentally friendly techniques aimed at producing ...
W He, Rui Wang, W Li, G Hu, T Singh, Q Fu
Effect of the Cellulose-Binding Domain Associated with Xylanase on the Degradation of Softwood and Hardwood Xylan
2025 - IRG/WP 25-11078
Brown rot fungi rapidly degrade hemicellulose, which is recognized as a key decomposition process during the early stages of wood decay. Brown rot fungi possess multiple genes encoding hemicellulose-degrading enzymes, suggesting that enzymatic hydrolysis plays an important role in this process. Hemicellulases produced by these fungi often contain an additional domain classified as carbohydrate-bin...
R Tsukida, Y Kojima, S Kaneko, M Yoshida
From Wet to Preserved: Collecting Data of Waterlogged Wood Treated with PEG in Lanyan Museum and Study the Effect of Molecular Weight on Dimensional Stability
2025 - IRG/WP 25-11080
Waterlogged archaeological wood are most commonly unearthed in Yilan County, with over one-third originating from the Yilan Agricultural School site. This study aims to analyse the current state of conservation of waterlogged archaeological wood in Yilan County and hopes to properly alleviate the irreversible damage caused to the waterlogged archaeological wood after they leave the water layer. Ho...
K-L Huang, P-Y Kuo
Synergistic effect of the association of Prosopis juliflora polyphenolic extractives with tebuconazole on the growth inhibition of brown and white rot fungi: a solution to increase the naturality and safety of wood preservation treatment
2025 - IRG/WP 25-20732
The antifungal effect of catechin and extractives from Prosopis juliflora was studied against one white rot fungus, Trametes versicolor (TV), and one brown rot fungus, Rhodonia placenta (PP). The extractives from Prosopis julilfora were crude mesquitol and pure mesquitol. Tebuconazole was used in this study as a known fungicide against the two named fungi. Wood protection using fungicides can be h...
J Owino, J Tuimising, F Mangin, P Gérardin, A Kiprop, C Gérardin-Charbonnier
Enhanced Flame Retardancy in Wood via In Situ Polymerization of Phosphorus-Containing Ionic Liquids
2025 - IRG/WP 25-20736
Wood, a ubiquitous material in furniture and construction, is limited by its natural flammability. Existing wood flame retardant technologies are often ineffective and lack environmental sustainability. Ionic liquids (ILs), known for their non-flammability and non-volatility, offer a green solvent solution to these challenges. In this study, we synthesized a novel phosphorus-containing, polymerisa...
J Jiang, Y Wu, J Luo, W Qu
Functionalization of wood with nano-sized titanium dioxide – Efficacy against mould growth and effect on cell wall integrity
2025 - IRG/WP 25-20740
Nano-sized titanium dioxide (nano TiO2) is a photocatalytic compound that generates reactive radicals under UV radiation, which can inhibit microbial growth and impart self-cleaning properties. This effect has been widely utilised on materials such as glass or tiles. This study investigates the potential of nano TiO2 treatments to prevent mould growth on wood and their impact on cell wall integrit...
U Hundhausen, S Bollmus, L Ross
CIOL Wood - Scientific Innovations in Wood Modification for Enhanced Performance and Usage
2025 - IRG/WP 25-20743
CIOL® is a wood modification technology designed as an environmentally friendly alternative to traditional wood preservatives. Utilising a biobased formulation based on sorbitol and citric acid, CIOL® enhances wood's chemical structure, improving its durability, stability, and resistance to decay. This paper provides an overview of the advancements made in CIOL® technology, including its improv...
E Larnøy, A Treu, M Diraison, M Smith, A Audouin, P T Lewandowski, J Biørnstad
Sustainable and environmentally friendly bio-based protection against fire
2025 - IRG/WP 25-20756
Flame-retardant agents are used to confer fire resistant properties with effects strongly dependent on their ability to form char during the thermal degradation. The char coats the polymeric materials and provides a good barrier against heat and oxygen diffusion, thus reducing the combustion rate of the polymeric materials. Halogenated agents that are used today are toxic and may cause severe heal...
M Tanase-Opedal, A Larsson, P O Flaete