Your search resulted in 16 documents.
Effect of the Cellulose-Binding Domain Associated with Xylanase on the Degradation of Softwood and Hardwood Xylan
2025 - IRG/WP 25-11078
Brown rot fungi rapidly degrade hemicellulose, which is recognized as a key decomposition process during the early stages of wood decay. Brown rot fungi possess multiple genes encoding hemicellulose-degrading enzymes, suggesting that enzymatic hydrolysis plays an important role in this process. Hemicellulases produced by these fungi often contain an additional domain classified as carbohydrate-bin...
R Tsukida, Y Kojima, S Kaneko, M Yoshida
Interaction of cellulolytic enzymes with fungal cell wall polysaccharides
2025 - IRG/WP 25-11071
Wood rotting fungi are the primary agents responsible for the decomposition of wood in natural environments. These fungi secrete a variety of enzymes to degrade the chemically and structurally resistant components of the wood cell wall. Some of these enzymes possess a carbohydrate-binding module (CBM), which enhances enzymatic efficiency by increasing their affinity to the substrate. Previously, w...
K Fukabori, N Hattori, Y Kojima, R Iizuka, M Yoshida
Non-enzymatic Gloeophyllum trabeum decay mechanisms: Further study
2001 - IRG/WP 01-10395
Information will be presented on the mechanisms involved in, and potential application of, non-enzymatic wood decay by brown rot decay fungi. Specifically, the hypothesized role of low molecular weight phenolate derivatives will be discussed in relation to non-enzymatic degradation of wood. The mechanism of binding of iron by cellulose, and binding and reduction of iron by fungal derivatives and m...
B Goodell, J Jellison
Copper binding capacity of modified wood flour
1992 - IRG/WP 92-3709
Wood flour was modified by reaction with oxidising agents and CCA preservative. The copper chromium and arsenic were removed from the CCA treated wood flour by an acid leaching procedure. The modified wood flours were allowed to react with copper acetate solution and the level of copper fixation achieved was determined. The modified wood flours had greater affinity for copper ions present in solut...
N C Milowych, W B Banks, J A Cornfield
The effect of tunicamycin on production and secretion of extracellular carbohydrate-degrading enzymes by Postia placenta
1988 - IRG/WP 1342
The extracellular carbohydrate-degrading enzymes of wood-decay fungi are usually heavily glycosylated and therefore stable under most denaturing conditions. It is unlikely that wood decay can be prevented by simply inactivating these enzymes. Tunicamycin, an antibiotic produced by Streptomyces lysosuperificus, prevents the glycosylation of glycoproteins and can interfere with the secretion of thes...
J A Micales, T L Highley
Extracellular carbohydrate production by isolates of Postia (=Poria) placenta
1989 - IRG/WP 1388
A monokaryotic strain of Postia (=Poria) placenta, ME20, which is unable to degrade wood, also failed to produce extracellular polysaccharide when grown in liquid culture, regardless of carbon source or concentration. Other isolates of Postia placenta, including another monokaryon and a hybrid of this monokaryon with ME20, produced large quantities of this material. The polysaccharide consisted pr...
J A Micales, A L Richter, T L Highley
The identification of the carbohydrate degrading enzymes from the crude extract of brown-rot fungus Gloeophyllum trabeum
1991 - IRG/WP 1483
The brown-rot fungus, Gloeophyllum trabeum, produces a pattern of carbohydrate degrading enzymes during the wood decay. In liquid sawdust media the activities of endo-b-1,4-gluganase and endo-b-1,4-xylanase were at the maximum after 5-6 weeks cultivation. The production of enzymes started immediately after inoculation suggesting that the degradation of hemicellulose and easily degradable parts of ...
A-C Ritschkoff, J Buchert, L Viikari
Postia placenta gene expression of oxidative and carbohydrate metabolism related genes during growth in furfurylated wood
2009 - IRG/WP 09-10701
A range of studies the last decade have shown that modified wood can provide excellent protection against a range of wood deteriorating organisms, including decay fungi. However, we still lack information about why the modified wood is protected from microbial attack. Several hypotheses have been put forward e.g. inhibition of action of specific enzymes, but they still need testing. An understandi...
G Alfredsen, C G Fossdal
The effects of acetylation level on the growth of Postia placenta
2011 - IRG/WP 11-10751
To understand the defence mechanisms utilized by decay fungi when exposed to different wood protection systems the study of gene expression can give us some answers. When the DNA sequences are known, primers can be designed to detect transcripts of genes with gene products related to basic cellular processes and hyphal growth. The characteristic gene products induced in different fungi by differen...
A Pilgård, G Alfredsen, C G Fossdal, C J Long II
The effects of acetylation level on the growth of Postia placenta over 36 weeks
2012 - IRG/WP 12-40589
Genomic sequencing gives us a tool to systematically and rapidly discover novel genes, how their products function in the cell, and explore their interactions. When the DNA sequences are known, primers can be designed to detect transcripts of genes with gene products related to basic cellular processes and hyphal growth. The characteristic gene products induced in different fungi by different wood...
A Pilgård, G Alfredsen, C G Fossdal, C J Long II
Natural durability and performance of Eucalyptus globulus single family house in Spain after 17 years exposure
2019 - IRG/WP 19-40873
From last century, in the country side in Spain is common to find wooden houses. The reason is mainly due the improvements in glues, materials, design by computer and processing in factories. All these technological advances have facilitated the development industrialized systems cheaper. However, the variety of row materials, designs and construction systems, combined with some hard climates, cou...
D Lorenzo, M Touza, J Fernandez-Golfín, A Lozano, J Benito
The InnovaWood Module Bank: Building an international e-learning platform for shared MSc courses in wood science and technology
2019 - IRG/WP 19-50355
The InnovaWood Module Bank is a shared e-Learning platform for standalone science, technology and education modules in wood science. A group of members of InnovaWood have committed to jointly develop this platform. The institutes benefit in that they can widen the range of courses they offer and use their teaching capacities more efficiently. Students obtain the possibility to take online courses ...
M Irle, U Kies, H Militz, P Sauerbier, M Vieux, A Prosic, B Wolfsberger, F Pichelin, I Mayer
A novel cellulose-binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11019
Wood-rotting basidiomycetes are the major organisms decomposing wood in nature. They are classified into two groups based on their decay modes; white-rot fungi and brown-rot fungi. White-rot fungi secrete various cellulolytic enzymes during the wood degradation process. The enzymes are known to be often appended with a cellulose binding domain (CBD) which assists the activity of catalytic domain. ...
Y Kojima, N Sunagawa, M Aoki, M Wada, K Igarashi, M Yoshida
The cellulose binding mechanism of a novel cellulose binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11021
In nature, wood decay is caused by various wood-rotting basidiomycetes. Wood-rotting basidiomycete are mainly divided into white-rot fungi and brown-rot fungi. Their main carbon source is cellulose of the wood cell wall during wood decay, and they produce a variety of enzymes to decompose cellulose. The cellulolytic enzymes often possess a cellulose binding domain (CBD) as an additional domain con...
M Aoki, Y Kojima, M Wada, M Yoshida
A novel cellulose-binding domain from the brown-rot fungus that can be used to evaluate cellulose in wood
2024 - IRG/WP 24-11046
Wood-rotting basidiomycetes are the primary microorganisms that decay wood in nature. They are classified as white-rot fungi and brown-rot fungi by the difference in decaying types. White-rot fungi secrete a variety of cellulolytic enzymes during wood degradation. These enzymes often have an additional cellulose-binding domain (CBD) that adsorbs to the cellulose surface and localizes the catalytic...
Y Kojima, N Sunagawa, S Tagawa, T Hatano, S Nakaba, M Aoki, M Wada, K Igarashi, M Yoshida
Distribution of Crystalline Cellulose-Binding Domain CBM104 in Wood Rotting Fungi
2025 - IRG/WP 25-11073
Wood rotting fungi play a crucial role in biodeterioration of wood. Many brown-rot fungi are known to rapidly degrade cellulose in wood despite lacking enzymes with cellulose-binding domains. This has led to the hypothesis that they rely on a non-enzymatic degradation system. We recently discovered a novel cellulose-binding domain, CBM104, in the brown-rot fungus Gloeophyllum trabeum. In this stud...
Y Kojima, N Sunagawa, M Aoki, S Tagawa, M Wada, K Igarashi, M Yoshida