IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 689 documents. Displaying 25 entries per page.


Heat treatment of less-valuable Nigerian-grown Ceiba pentandra wood for improved properties
2006 - IRG/WP 06-40332
The hardwood Ceiba pentandra locally known as “ araba “ in Nigeria is rarely used for structural and construction works due to its high dimensional instability, low strength and durability values. Samples (10 x 10 x 150mm) were removed from four green boards (25 x 200 x 3000mm) of this species originating from a natural forest stand in Nigeria and subjected to 2-hour heat treatment at 160°C and 220°C. Heat treatment reduced swelling, hygroscopicity and swelling intensity of Ceiba pentandra wood with the reductions being generally higher in the 220°C treatment than the 160°C treatment. The reductions constitute improvements in these properties. These improvement in properties have the potential to increase the market value of this species through wider acceptability for various purposes hitherto considered impossible. This however is subject to further investigations on the effects on durability and strength properties which are other key features in the choice of wood for various purposes.
L Awoyemi


Estimating the heat treatment intensity through various properties of thermally modified timber (TMT)
2009 - IRG/WP 09-40459
The suitability of different measures for prediction of the heat treatment intensity was investigated. Therefore, the resistance to impact milling (RIM), the lightness L*, the equilibrium moisture content (EMC), the anti swelling efficiency (ASE) and the total amount of soluble carbohydrates (TSC) of heat treated specimens were correlated with corresponding fungal resistance achieved by heat treatments. Heat treatment temperatures of 180°C, 200°C, 210°C, 220°C, and 240°C for various heat treatment durations from 0.25 to 72 h were applied. The results show, that the decrease in mass (dm) by heat treatments is a suitable measurand to describe the treatment intensity, which is a product out of treatment temperature and duration, where the impact of temperature is predominating the impact of time. The properties examined showed a strong reciprocally proportional relationship with the decrease in mass. Thus different correlations were found for the various treatment temperatures: The higher the temperature applied, the lower was the decrease in mass required for an equivalent improvement of certain wood properties, e.g. biological durability, EMC, and dimensional stability. However, mass loss by Poria placenta correlated well with the resistance to impact milling (RIM), lightness L*, EMC, ASE and TSC of the different heat treated specimens, depending on the heat treatment temperature. Consequently, a reliable estimation of improved fungal resistance of TMT, as well as the quality control of TMT in general, strongly requires certain process information.
C R Welzbacher, C Brischke, A O Rapp


Development of markers to predict decay durability of heat treated wood
2010 - IRG/WP 10-40496
Effect of heat treatment temperature on elemental composition of Scots pine sapwood (Pinus sylvestris) has been investigated in the range of temperatures between 220 and 250°C. Results revealed an important increase of carbon content, while oxygen content significantly decreases. Independently of the heat treatment temperature, elemental composition is strongly correlated with the mass losses due to thermal degradations. Carbons content as well as O/C ratio seem to represent valuable markers to estimate wood degradation after heat treatment. Heat treated specimens were exposed to fungal decay using the brown rot fungus Poria placenta and the weight losses due to fungal degradation were determined. Correlations between weight losses recorded after fungal exposure and elemental composition indicated that carbon content or O/C ratio can be used to predict wood durability conferred by heat treatment allowing to envisage the development of a proper method to evaluate the quality of heat treated wood and predict its durability. These results also confirm that chemical modifications of wood cell wall polymers are the main factors responsible for wood durability improvement against fungal decay after heat treatment.
Ž Šušteršic, A Mohareb, M Chaouch, M Pétrissans, M Petric, P Gérardin


TMT–Interlab–Test to establish suitable quality control techniques - Structure and first results
2010 - IRG/WP 10-40503
As a result of growing quality demands from manufacturers and end-consumers of thermally modified timber (TMT) recent scientific research activities are increasingly focussed on modification mechanisms and by this on the development of suitable quality control methods. To deepen the knowledge in modification mechanisms and to obtain a larger variety of scientific data for TMT depending on the treatment intensity, a worldwide interlaboratory test series with TMT was started with nine research institutions involved, each contributing with their own most appropriate techniques and experiences. Therefore European beech and Norway spruce were thermally modified with different treatment intensities at Leibniz University Hannover and allocated to the involved partners. Basic treatment and material characteristics of the TMT used in the tests are presented in this paper and show that the decrease in mass by thermal modification (dm) is a suitable measure to describe the treatment intensity both for beech and spruce. Furthermore, color values and static mechanical strength properties proved to be highly correlated with dm. Consequently a strength prediction of TMT by color values appears applicable. Furthermore, correlations of dm with other target properties and further indicator measures are promising.
C R Welzbacher


Influence of heat treatment intensity on the structural integrity of 14 timber species
2012 - IRG/WP 12-40586
Thermally modified timber (TMT) is characterized by improved durability and dimensionally stability, but strength properties, especially the dynamic ones, are compromised at the same time. Because dynamic standard tests require high efforts and time, the high-energy multiple impact (HEMI) –test was developed for the fast and reliable characterisation of the structural integrity of TMT, showing a strong correlation of decreasing structural integrity with rising treatment intensity. Since the number of wood species subjected to this test method was limited up to now, 14 soft- and hardwoods were heat treated by ten different treatments at 180 and 220°C and used for determination of the structural integrity. The results showed temperature dependent strong correlations of decreasing structural integrity with increasing intensity for all species tested, pointing to the general applicability of the destructive HEMI-test in the frame of the post production quality control of TMT. In addition, the structural integrity is not affected by density, anatomical macro-defects like drying cracks, growth ring and fibre deflection or weathering impacts, which confirms its usage for implementation within a reliable factory production control to ensure constant product qualities.
C R Welzbacher, C Brischke, G Maier


Relationships between heat treatment intensity and some conferred properties of different European softwood and hardwood species
2012 - IRG/WP 12-40593
Effect of treatment intensity on conferred properties like elemental composition, durability, anti swelling efficiency (ASE) and equilibrium moisture content (EMC) of different European softwood and hardwood species subjected to mild pyrolysis at 230°C under nitrogen for different durations has been investigated. Independently of the wood species studied, elemental composition is strongly correlated with the mass losses due to thermal degradations which are directly connected to treatment intensity (duration). In all cases, an important increase of the carbon content associated with a decrease of the oxygen content was observed. Heat treated specimens were exposed to several brown rot fungi and the weight losses due to fungal degradation determined after 16 weeks, while effect of wood extractives before and after thermal treatment was investigated on mycelium growth. ASE and EMC were also evaluated. Results indicated important correlations between treatment intensity and all of the wood conferred properties like its elemental composition, durability, ASE or EMC. These results clearly indicated that chemical modifications of wood cell wall polymers are directly responsible for wood decay durability improvement, but also for its improved dimensional stability as well as its reduced capability for water adsorption. All these modifications of wood properties appeared simultaneously and progressively with the increase of treatment intensity depending from treatment duration. At the same time, effect of extractives generated during thermal treatment on Poria placenta growth indicated that these latter ones have no beneficial effect on wood durability.
M Chaouch, S Dumarçay, A Pétrissans, M Pétrissans, P Gérardin


Development of a quality control assessment method to predict properties of heat treated wood
2012 - IRG/WP 12-40611
Heat treatment has been used to improve properties of non durable European species. Chemical modification of some of the wood components provides improved dimensional stability and biological performance against decay fungi while mechanical properties such as modulus of rupture are reduced. Quality control of commercially made thermally treated wood is one of the major challenges to allow its industrial development. The variability inherent within wood specie and between wood species, density and chemical compositions variation combined with the heat treatment parameters such as temperature duration and levels contribute to the production of heterogeneous heat treated wood. The development of a heat treatment process by conduction which monitors the weight changes during the process will facilitate and help in controlling, in understanding and predicting the properties of heat treated wood. Data collected from a pilot study of heat treated wood using conditions similar to commercial process show that hardwood species were more susceptible to thermal degradation as compared to softwood. It was also established that wood chemical composition is directly connected to the percent of weight loss due to thermodegradation, allowing the use of chemical composition to predict fungi durability. Carbon and oxygen contents and/or oxygen to carbon ratio of heat treated wood can be therefore used as valuable markers to develop quality control assessment of heat treated wood.
M Chaouch, K Candelier, S Dumarcay, A Pétrissans, M Pétrissans, P Gérardin


Proposal for further work on accelerated ageing
1988 - IRG/WP 2314
M-L Edlund


Thermal treatment of wood: European Processes and their background
2002 - IRG/WP 02-40241
Recent efforts on thermal treatment of wood lead to the development of several processes introduced to the European market during the last few years. The total production capacity of heat treated wood in 2001 is estimated as approx. 165.000 m3. In the paper the different heat processes are presented. The general technology as well as scientific data on the chemical transformation of the cell wall polymers, on the biological performance, on the physical and mechanical properties of the treated wood are presented and discussed
H Militz


Durability of pine modified by 9 different methods
2004 - IRG/WP 04-40288
The decay resistance was studied for pine modified by nine methods of wood modification: 1) Acetylation, 2) Treatment with methylated melamine resin (MMF), 3) Acetylation followed by post-treatment with MMF-resin, 4) Thermal modification, 5) Furfurylation, 6) Maleoylation (using water solution of MG or ethanol solution of maleic anhydride), 7) Succinylation, 8) NMA-modification and 9) modification with reactive linseed oil derivative (UZA), Wood blocks of Scots pine (Pinus sylvestris L.) sapwood were modified in pilot plants. Methods 1-5 were performed by the authors at Chalmers University of Technology or at BFH in Hamburg. Methods 5-9 were part of a European research project (the Chemowood project, FAIR-CT97-3187) and therefore each of these modifications was performed by the project participant responsible for the method. For laboratory testing in TMCs (modified European standard ENV 807) and pure basidiomycete culture bioassays, smaller test specimens were cut from the modified wood blocks. Most of the modification methods were applied on test specimens for marine field testing (EN 275) and some methods to produce mini-stakes for field tests in five Swedish fields. Some modification methods result in modified wood with poor durability, whereas other methods (acetylation, furfurylation and MMF-treatment) seem to provide excellent resistance to microbial decay.
M Westin, A O Rapp, T Nilsson


Corrosion of fasteners in heat-treated wood – progress report after two years’ exposure outdoors
2005 - IRG/WP 05-40296
The corrosion of common fastener materials now in use - mild steel, zinc-coated steel, aluminium and Sanbond Z-coated steel – has been evaluated after two years’ exposure outdoors in untreated and heat-treated spruce (Picea abies) respectively. Spruce from South-western Sweden was used. The heat-treatment was carried out in Finland according to the ThermoWood process at a maximum temperature of 220 °C for five hours. The results so far show that the corrosion of fasteners in heat-treated wood according to the particular specification is more severe than in untreated wood. Mild steel and zinc-coated steel has been most susceptible. Stainless steel is hardly attacked at all.
J Jermer, B-L Andersson


Improved resistance of Scots pine and Spruce by application of an oil-heat treatment
2000 - IRG/WP 00-40162
Spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were subject to a heat treatment which was carried out in an oil-bath. The aim was to improve the dimensional stability of the treated wood and its resistance against fungi. The bath of vegetable oil provides a uniform heat transfer at temperatures of 180°C, 200°C and 220°C and protects the submersed wood from oxygen. Heat treatment in air atmosphere was also carried out at the same temperatures for comparison. Wood treated in hot oil was more equal in its appearance than wood heated in hot air. The treatment of spruce and pine in the oil-bath resulted in a better resistance against Coniophora puteana in a lab test according to EN 113 compared to the treatment in air atmosphere. In order to achieve the wanted upgrading effect, certain changes of mechanical properties and colour must be accepted. However, the strength loss caused by the heat-treatment in oil was less severe than in air atmosphere. Since all materials and the energy used in the process originate from renewable resources, the oil-heat-treatment appears to be environmentally friendly. All in all, the heat treatment in oil might be a promising approach to upgrade wood for outdoor use.
M Sailer, A O Rapp, H Leithoff


Heat treatment of bamboo
2001 - IRG/WP 01-40216
Bamboo is a fast growing material with remarkable mechanical properties. In many tropical and subtropical countries bamboo is available in suitable dimensions for a reasonable price. Therefore it is used for many purposes which range from the basket production up to the industrial production of parquet or paper. However, bamboo is known as susceptible to fungal or insect attack and it is difficult to treat with preservatives. Therefore BFH investigated the possibility to protect bamboo by other methods and tested the application of a heat treatment. European grown bamboo (Phyllostachys viridiglaucescens) and Asian grown bamboo (Phyllostachys pubescens) were heat treated and were subsequently inoculated with the basidiomycetes Coniophora puteana, Coriolus versicolor and Schizophyllum commune in an agar block test. Further the durability of treated specimens against soft rot fungi was tested. The changes of the mechanical properties (MOE and shock resistance) caused by the heat treatment were determined too. The application of temperatures above 200°C caused a clearly enhanced durability against a basidiomycete as well as against a soft rot attack but the shock resistance was intensely reduced. Further investigations are still ongoing. The study has been carried out with financial support from the Commission of the European Communities, specific INCO programme INCO-DC 961344.
H Leithoff, R-D Peek


The effects of heat treament on the specific gravity of beech and spruce wood
2003 - IRG/WP 03-40254
The effects of heat treatment on specific gravity of beech (Fagus orientalis) and spruce wood (Picea orientalis) naturally grown and intensively used in forest products industry in Turkey were studied. The wood samples were cut into 2 x 2 x 3 cm. Heat treatment was than applied to the wood samples at four different temperatures (130 °C, 150 °C, 180 °C and 200 °C) and three different durations (2 h, 6 h and 10 h) under air atmospheres. The results indicated that the specific gravity values treated by heating generally exhibited a decrease with increasing the exposure durations and temperatures compared to the untreated wood samples.
S Yildiz, Ü C Yildiz, G Colakoglu, E D Gezer, A Temiz


Durability of different heat treated materials from industrial processes in ground contact
2005 - IRG/WP 05-40312
In this study the durability of heat treated wood originating from four different European industrial heat treatment processes in ground contact was examined. The manufacturers of heat treated material were: PLATO Hout B.V./Netherlands, Thermo Wood/Finland, New Option Wood/France and Menz Holz/Germany where Oil-Heat treated Wood (OHT) is produced. All heat treated materials showed significantly increased durability against decay in ground contact compared to untreated Scots pine (Pinus sylvestris L.), independent from the different heat treatment processes. After four years of field testing, heat treated material appears to be not suitable for in ground contact application, since long service life is required. In analogy to the classification of natural durability (EN 350-1, 1994), durability classes in the range from 2 (durable) to 4 (slightly durable) were achieved by the different heat treated materials. This stands in contrast to statements of suppliers, who promote their material as suitable for in ground applications.
C R Welzbacher, A O Rapp


The effects of heat treatment on the toughness of beech wood
2004 - IRG/WP 04-40283
The effects of heat treatment on toughness of beech (Fagus orientalis) wood naturally grown and intensively used in forest products industry in Turkey were studied. The wood samples were cut into 5 x 5 x 5 cm. Heat treatment was than applied to the wood samples at three different temperatures (130 °C, 150 °C and 180 °C) and three different durations (2 h, 6 h and 10 h) under air atmospheres. The results indicated that the toughness values treated by heating generally exhibited a decrease with increasing the exposure durations and temperatures compared to the untreated wood samples.
S Yildiz, Ü C Yildiz, E D Gezer, Ali Temiz, E Dizman


The effects of heat treatment on anatomical changes of beech wood
2004 - IRG/WP 04-40284
The effects of heat treatment on anatomical changes of beech wood (Fagus orientalis) naturally grown and intensively used in forest products industry in Turkey were studied. The wood samples were cut into 2x2x3 cm and than conditioned at 25 °C and 65 % relative humidity for 3 weeks. Heat treatment was than applied to the wood samples at four different temperatures (130 °C, 150 °C, 180 °C and 200 °C) and three different durations (2 h and 10 h) under air atmospheres. The anatomical changes were determined for each heat treatment variation.
Ü C Yildiz, Z Gerçek, B Serdar, S Yildiz, E D Gezer, E Dizman, A Temiz


The Effect of Heat on the Retention of Ammoniacal Copper Quat (ACQ-AB) onto Scots Pine (Pinus Sylvestris L.) Wood
2008 - IRG/WP 08-40390
In this study, the sapwood of Scots pine (Pinus sylvestris L.) were treated with ammonical copper quat type (ACQ-AB), which is one of the environmentally friendly wood preservatives, by using soaking method as a functions of various temperatures and time. The results indicated that the retention behaviour of ACQ onto the wood was considerably affected by temperature of ACQ solution and treatment time.
M Hakki Alma, A Mukremin Kara


Heat treated timber in Finland
2000 - IRG/WP 00-40158
Heat treatment permanently changes the physical and chemical properties of wood by means of high temperatures (150 - 240°C). Heat treatment darkens the colour of the wood. Heat treatment improves the equilibrium moisture content of the wood and the shrinkage and swelling of the wood is reduced. Very high temperatures improve the resistance to rot and also reduce the susceptibility to fungal decay. At the same time the strength properties of the timber are reduced: the bending strength can fall by 30%, depending on the treatment conditions and the cleavage strength (tensile strength perpendicular to fibres) may be reduced to a half, which makes heat treated timber split easily. The improved characteristics of heat treated timber offer the timber product industry many potential and attractive new opportunities. Also wood species having no commercial value as such can be heat treated and in this way new uses can be found for these species.
T Syrjänen, E Kangas


Heat treatment of wood strands for OSB production: Effect on the mechanical properties, water absorption and dimensional stability
2002 - IRG/WP 02-40238
The effect of heat treatment on the mechanical and physical properties of commercial OSB strands was evaluated. Heat treatment was applied under inert atmospheric conditions to wood strands. The aim of this study was to examine the heat treatment parameters to achieve significant reduction of thickness swelling (upon exposure to moisture in service) without causing excessive reductions in strength. Heat treatments of 200, 210, 220, 230, 240, 250, and 260°C for 20 minutes were applied and swelling tests were performed. Subsequently the modulus of rupture and modulus of elasticity were measured in wood strands. High temperature treatments resulted in significant reductions in thickness swelling of wood strands but resulted in 20% reductions of modulus of rupture and modulus of elasticity.
G J Goroyias, M D C Hale


Investigation of some technical properties of heat-treated wood
2003 - IRG/WP 03-40266
The objective of this study was to investigate some technical properties of heat-treated wood. Wood heat-treated according to a process intended for wood in above-ground end-uses (European hazard class 3) was subject to the following: · A delamination test according to EN 391 with glulam beams made of heat-treated pine (Pinus sylvestris) and spruce (Picea abies) laminations, assembled with PRF and PVAc adhesive respectively. · Determination of the withdrawal load for screws and nails. · Determination of the emission factor for VOC and the identification of major compounds. Results: · PRF adhesive performed very well whereas PVAc adhesive showed an unacceptable percentage of delamination and thus seems to be unsuitable for gluing heat-treated wood. · There is an indication that the withdrawal load for heat-treated wood is generally lower than for untreated wood. However, the number of tests carried out was quite small and definitive conclusions are difficult to draw. · The emission factor for the heat-treated wood, expressed as TVOC, was less than 10 µg/(m2 x h) and this was less than for untreated reference.
C Bengtsson, J Jermer, A Clang, B Ek-Olausson


Radio frequency heating times for sterilization radiata pine solid piles
2017 - IRG/WP 17-40815
In this work was sterilized wood packaging material of radiata pine, stacked as solid piles without stickers, for determining the heating times using radiofrequency treatment. The experiments were performed in a radio frequency semi-industrial equipment. The results showed that the radio frequency heating times increases with wood volume and that radio frequency treatments were faster than conventional vapour heat treatment.
H Esquivel, V Sepúlveda, J Torres, L Salvo, R A Ananías


Novel wood modification processes for window and cladding products
2004 - IRG/WP 04-40285
Because of the low natural durability and low dimensional stability of European wood species, the usage of wood for window frames has decreased dramatically during the last decade. In a joint project of several German research institutes and the window industry, following wood modification systems were compared. heat treatment (3 different materials from 2 companies) acetylation (pine sapwood and beech wood acetylated with acetic anhydride) polymerisation (melamine resin treated pine sapwood, Interlace treatment, furfurylation) wax treatment (pine sapwood, which was impregnated with natural resin and waxes) Investigated was the moisture content, dimensional stability, capillary water uptake and the durability. The dimensional stability show a high increase for following materials: heat treated wood, acetylated pine, interlace treated wood and furfurylated wood. The melamine resin treated wood and the wax treated wood show no significant increase in the dimensional stability. The biological durability against different basidiomycetes was tested according to the EN 113. As test fungi, Coniophora puteana, Poria placenta and Coriolus versicolor were used. The results show a very high increase in the durability for most of the treated wood. The wax treated wood shows no significant increase in durability. A novel window frame consists of several functional layers. Different wood properties are demanded for the single layers to achieve optimal window properties. Every modified wood shows a special potential for the use in a functional layer.
A Krause, C Hof, H Militz


Effects of artificial UV weathering and soft rot decay on heat treated wood
2005 - IRG/WP 05-40302
Oil and inert gas oven heat treated pine wood strips 100 µm thick were mildly heat treated (200°C, 30 mins linseed oil, 120 mins oven). Following treatment, specimens were exposed to UV weathering (300 hours) and decay by the soft rot fungus, Chaetomium globosum. The effects of each treatment were assessed by zero span tensile testing, microscopy and by FTIR. Tensile testing of heat treated strips showed greater strength losses in the oil treated samples (73%) than in the oven treated samples (26% loss). Heat treatment darkened the wood strips but this was photo-bleached on exposure to UV artificial weathering. The UV exposure caused some loss in tensile strength (35%) but the additional effects of UV on the tensile strength were less in heat treated wood (oil 15%, oven 18%). The combined effects of UV and fungi on the tensile strengths were less severe for treated wood than in untreated wood, (oil 4%, oven 18%) thus some protection was afforded by the heat tretaments. Exposure of untreated wood strips to the soft rot fungus caused some loss in tensile strength (32%), but heat treated wood showed small but not statistically significant gains in tensile strength after fungal exposure (oil, gain 30%, oven, gain 3%). Microscopic examination confirmed that a soft rot was minimal in heat treated samples, i.e. it was mainly confined to wood cell wall penetration. The combined effects of UV and fungi caused further losses of tensile strength in both oven and oil heat treated samples, but this loss was less severe than that which occurred in untreated controls. However, due to the severity of the initial losses caused by the oil heat treatment, the highest losses overall were in those oil heat treated samples exposed to UV (82%) and UV and decay (78%). Microscopic examination revealed that decay was more advanced in UV exposed samples. The FTIR spectra of oven heat treated samples did not show any change, while the oil heat treated samples increased absorbance at 1737cm-1 and 1450cm-1 relating to the presence of oil. Following fungal decay, no changes were observed, this corresponds with the cavity attack by soft rot fungi, which leave adjacent portions of cell wall material untouched. The ultra violet exposure affected the spectra of all specimens, increasing the absorbance at 1737cm-1. This relates to photo-degradation of the hemicelluloses, forming new carbonyl groups. In the UV exposed untreated wood there were also increases in absorbance at 1510 and 1160cm-1 relating to alterations in lignin structure.
M D C Hale, S C Ghosh, M J Spear


Effects of heat treatment on water repellence and anti-swelling efficiency of beech wood
2002 - IRG/WP 02-40223
The heating of solid wood to higher temperatures is the simplest and the cheapest means for stabilizing its dimensions. For the investigation of the effect of thermal treatment on water repellency effectiveness and anti-swelling efficiency of beech wood (Fagus orientalis Lipsky), air-seasoned samples of beech wood were heated in presence of air at temperatures of 130 C, 150 C, 180 C and 200 C for different periods (2, 6, 10 h). Subsequently, the heated samples and their controls were immersed in water at 20 C, 65 % relative humidity for various periods. Percent of the tangential swelling and rate of the water absorption values of the test and control samples were determined for 2, 4, 8, 24, 48, 72 h on basis of oven-dried measurements. The heat treatment brought about a considerable reduction in water absorption and tangential swelling of the beech wood.
S Yildiz


Next Page