Warning: Undefined array key "yearfrom" in /home/jail/home/irgwp/private_html/irgdocs/search.php on line 22

Warning: Undefined array key "yearto" in /home/jail/home/irgwp/private_html/irgdocs/search.php on line 23
IRG-WP Documents Search

IRG Documents Database and Compendium

Search and Download IRG Documents:

Between and , sort by

Displaying your search results

Your search resulted in 714 documents. Displaying 25 entries per page.

Influence of hygro-thermal treatment temperature and duration on dimensional stabilisation of wood modified with poly(butylene succinate)
2017 - IRG/WP 17-40813
To improve wood properties, especially dimensional stability, a treatment based on poly(butylene succinate) oligomers (OBS) was experimented. After impregnation in wood, a further hygro-thermal treatment (HTT) was carried out in a pressurized reactor at 100% relative humidity (RH) at differing temperatures for differing durations. The aim of HTT is to induce partial swelling of wood cell walls so ...
C Grosse, M Noël, L Rautkari, P Gérardin

Thermal treatment of wood: European Processes and their background
2002 - IRG/WP 02-40241
Recent efforts on thermal treatment of wood lead to the development of several processes introduced to the European market during the last few years. The total production capacity of heat treated wood in 2001 is estimated as approx. 165.000 m3. In the paper the different heat processes are presented. The general technology as well as scientific data on the chemical transformation of the cell wall ...
H Militz

Corrosion of fasteners in heat-treated wood – progress report after two years’ exposure outdoors
2005 - IRG/WP 05-40296
The corrosion of common fastener materials now in use - mild steel, zinc-coated steel, aluminium and Sanbond Z-coated steel – has been evaluated after two years’ exposure outdoors in untreated and heat-treated spruce (Picea abies) respectively. Spruce from South-western Sweden was used. The heat-treatment was carried out in Finland according to the ThermoWood process at a maximum temperature ...
J Jermer, B-L Andersson

Improved resistance of Scots pine and Spruce by application of an oil-heat treatment
2000 - IRG/WP 00-40162
Spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were subject to a heat treatment which was carried out in an oil-bath. The aim was to improve the dimensional stability of the treated wood and its resistance against fungi. The bath of vegetable oil provides a uniform heat transfer at temperatures of 180°C, 200°C and 220°C and protects the submersed wood from oxygen. Heat trea...
M Sailer, A O Rapp, H Leithoff

The effects of heat treament on the specific gravity of beech and spruce wood
2003 - IRG/WP 03-40254
The effects of heat treatment on specific gravity of beech (Fagus orientalis) and spruce wood (Picea orientalis) naturally grown and intensively used in forest products industry in Turkey were studied. The wood samples were cut into 2 x 2 x 3 cm. Heat treatment was than applied to the wood samples at four different temperatures (130 °C, 150 °C, 180 °C and 200 °C) and three different durations...
S Yildiz, Ü C Yildiz, G Colakoglu, E D Gezer, A Temiz

Durability of different heat treated materials from industrial processes in ground contact
2005 - IRG/WP 05-40312
In this study the durability of heat treated wood originating from four different European industrial heat treatment processes in ground contact was examined. The manufacturers of heat treated material were: PLATO Hout B.V./Netherlands, Thermo Wood/Finland, New Option Wood/France and Menz Holz/Germany where Oil-Heat treated Wood (OHT) is produced. All heat treated materials showed significantly i...
C R Welzbacher, A O Rapp

The effects of heat treatment on the toughness of beech wood
2004 - IRG/WP 04-40283
The effects of heat treatment on toughness of beech (Fagus orientalis) wood naturally grown and intensively used in forest products industry in Turkey were studied. The wood samples were cut into 5 x 5 x 5 cm. Heat treatment was than applied to the wood samples at three different temperatures (130 °C, 150 °C and 180 °C) and three different durations (2 h, 6 h and 10 h) under air atmospheres. ...
S Yildiz, Ü C Yildiz, E D Gezer, Ali Temiz, E Dizman

Investigation of some technical properties of heat-treated wood
2003 - IRG/WP 03-40266
The objective of this study was to investigate some technical properties of heat-treated wood. Wood heat-treated according to a process intended for wood in above-ground end-uses (European hazard class 3) was subject to the following: · A delamination test according to EN 391 with glulam beams made of heat-treated pine (Pinus sylvestris) and spruce (Picea abies) laminations, assembled with PR...
C Bengtsson, J Jermer, A Clang, B Ek-Olausson

Ammoniacal wood preservative for use in non-pressure treatment of spruce and aspen poplar. Part 1
1984 - IRG/WP 3273
End-matched lumber of Picea glauca (Moench)Voss (white spruce) and Populus tremuloides Michx. (aspen poplar) timbers was treated by a thermal diffusion process in open tank treating vessels using an ammoniacal copper-arsenate wood preservative. The process proved technically feasible with respect to controlling the vapourization of ammonia from open tanks during treatment at high temperatures. Tre...
C D Ralph, J K Shields

Effects of surfactants and ultrasonic energy on the treatment of wood with chromated copper arsenate
1977 - IRG/WP 3108
Sugar pine stakes 1'' x 1" x 16" were treated by a hot-water bath followed by soaking in cold CCA solution for 10 to 30 minutes. A similar number of stakes were treated by a cold-cold bath. Half of the stakes were subjected to ultrasonic energy during the CCA bath. The mean absorption for stakes given the hot-cold bath was 18.52 pcf (297 kg/m³) and 4.64 pcf (74 kg/m³) for those...
C S Walters

Thermal modification of non-durable wood species 1. The PLATO technology: thermal modification of wood
1998 - IRG/WP 98-40123
The PLATO technology is an innovative upgrading technology with low environmental impact, which can be applied to fast grown and non-durable wood species. This technology is based on a thermal modification of solid wood without the addition of chemicals (e.g. preservatives), consisting of a hydrothermal treatment, followed by drying and curing. The PLATO technology results in a substantial improve...
M J Boonstra, B F Tjeerdsma, H A C Groeneveld

Development of wood retification process at the industrial stage
1998 - IRG/WP 98-50101-16
Wood is a natural composite material which exhibits outstanding properties from the technical as well as from the ecological point of view. However, it is an anisotropic, hygroscopic material sensitive to biological attacks. We have to stabilise and preserve it if we want to ensure its market shares faced with competing synthetic material, whilst taking the new environmental rules into account. T...
P Gohar, R Guyonnet

Investigation of the suitability of silver fir (Abies alba Mill.) for thermal modification
2004 - IRG/WP 04-40275
In this study the suitability of silver fir (Abies alba Mill.) was examined for thermal modification. Comparative experimental investigations were performed with silver fir and Norway spruce (Picea abies Karst.) after thermal treatments. Besides properties, which characterize the quality of heat treatments, like dimensional stability and resistance against fungal attack, strength properties of the...
C Brischke, A O Rapp

Durability aspects of (hydro)thermal treated wood
2000 - IRG/WP 00-40160
Samples of several wood species were treated in a two steps process, subsequently hydrothermal and dry heat-treated, by the so-called PLATO-process and analysed for their resistance against fungal attack. Both PLATO-treated and dry heat-treated specimen were prepared and analysed, in order to study the influence of moisture during hydrothermal treatment of wood. The resistance against all of the s...
B F Tjeerdsma, M Stevens, H Militz

Influences of the hydro-thermal treatment on physical properties of beech wood (Fagus orientalis)
2005 - IRG/WP 05-40303
Influences of the hydro-thermal treatment on physical properties of beech wood were studied. Wood specimens (2×2×2cm) were treated in two steps. At first step, samples were treated at 160,180 & 200ºC for 4, 5 & 6 hours. At second step, treated samples were cured based on their first step treatment temperatures (160,180 & 200ºC) for 16 hours. The treated samples were soaked in water...
B Mohebby, I Sanaei

Thermal modification of non-durable wood species 2. Improved wood properties of thermal treated wood
1998 - IRG/WP 98-40124
Properties of wood treated in a new heat-treatment process called the PLATO-process have been studied. Several wood species have been treated using this new thermal modification process using a range of process conditions (mainly time and temperature). In this study the characteristics of the treated wood were determined using samples from whole planks treated on pilot plant scale. The modified ch...
B F Tjeerdsma, M J Boonstra, H Militz

Ammoniacal wood preservatives for use in non-pressure treatment of spruce and aspen poplar. Part 2
1984 - IRG/WP 3274
A series of thermal diffusion treatments were carried out on unseasoned white spruce (Picea glauca (Moench) Voss) lumber and air dry aspen poplar (Populus tremuloides Michx.) timbers using an ammoniacal copper arsenate wood preservative. Under the specific conditions described, certain charges of lumber met the present Canadian Standards Association Wood Preservation Committee's requireme...
C D Ralph, J K Shields

Comparison of thermally modified wood originating from four industrial scale processes – durability
2002 - IRG/WP 02-40229
This study examined the differences in biological wood properties of heat treated wood originating from four different European industrial heat treatment plants. The manufacturers of heat treated material were: PLATO Hout B.V./Netherlands, Thermo Wood/Finland, New Option Wood/France and Menz Holz/Germany where Oil-Heat treated Wood (OHT) is produced. The results of miniblock tests with basidiomyc...
C R Welzbacher, A O Rapp

Environmental characterisation of retification process by-products (liquid and gaseous wastes)
2005 - IRG/WP 05-50224-10
In order to reduce environmental risks during the service life of the treated wood and to find new alternative developments on the durability of wood, some research and technology development have been made on thermal treatment. The retification process is one of these processes. The retification process induces chemical modification of the lignin and cellulosic components and modifies the intrins...
G Labat, E Bucket, S Legay, C Yriex, P Marchal, E Raphalen, M Vernois, R Guyonnet, H Besset, E Fredon), G Vilarem, L Rigal, C Raynaud

Characteristics of thermally modified wood in vacuum
2004 - IRG/WP 04-40287
In commercial thermal wood modification processes nitrogen, steam or oil has been used for the reduction of oxygen content in the reactor atmosphere. In present study no special heating medium, but an initial vacuuming step has been used for this purpose. Mass loss, resistance to fungal decay, dimensional stability, bending strength and modulus of elasticity of heat treated wood were evaluated and...
G Rep, F Pohleven, B Bucar

High-energy multiple impact (HEMI)-test – Part 2: A mechanical test for the detection of fungal decay
2006 - IRG/WP 06-20339
The suitability of the high-energy multiple impact (HEMI)-test for detection of early fungal decay was examined. The HEMI – test characterizes the treatment quality of thermally modified wood by stressing the treated material by thousands of impacts of pounding steel balls. This method differentiates between heat treatment intensities, which are expressed by structural changes of the wood. Simil...
C R Welzbacher, C Brischke, A O Rapp

High-energy multiple impact (HEMI)-test – Part 1: A new tool for quality control of thermally modified timber
2006 - IRG/WP 06-20346
Thermal modification processes improve durability and dimensional stability of wood, but the strength properties, especially the dynamic ones, are compromised and need to be considered with respect to industrial quality control. Results from standard dynamic strength testing, such as impact bending tests, suffer from high variability, and therefore require a high number of replicates. To overcome ...
C Brischke, A O Rapp, C R Welzbacher

The Effect of Flavonoids on Colour and Spectral Changes of the Wood Surface Caused by Heat Treatment or Ultra-violet Irradiation
2006 - IRG/WP 06-40341
Both heat treatment and UV irradiation can cause discolouration and change in the spectral properties of wood surface. Some of the characteristic flavonols have significant role on colour and spectral changes, despite of their relative small quantities in wood. Colour changes and spectral properties of natural and extracted black locust (Robinia pseudoacacia L.) and poplar (Populus nigra L.) were...
R Csonka-Rákosa, L Molnár-Hamvas, E Börcsök, J Molnár, K Németh

Effects of heat treatments on decay resistance and material properties of ponderosa pine and yellow poplar
2007 - IRG/WP 07-40374
The potential for using heat treatment to improve the properties of North American fenestration species was evaluated on ponderosa pine (Pinus ponderosa L) and yellow poplar (Liriodendron tulipifera L) treated using the ThermoWood process at various treatment temperatures and times. Soil block tests using Gloeophyllum trabeum, Postia placenta, or Trametes versicolor showed that durability was enh...
C Vidrine, C Freitag, J Nicholson, J J Morrell

Fire, flame resistance and thermal properties of oil thermally-treated wood
2007 - IRG/WP 07-40361
Oil thermal treatment, first developed by German scientists, is a promising technology for improving the durability and dimensional stability of wood for outdoor above-ground residential uses such as siding and shingles. The present authors’ previous research showed that 220ºC is an optimal treatment temperature, with 2 hours’ treatment producing wood with significantly improved moisture and ...
Jieying Wang, P Cooper

Next Page