IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 353 documents. Displaying 25 entries per page.


Fire resistance of Alder wood treated with some chemicals. Part II. Effect of Other Chemicals on the Combustion Properties
2002 - IRG/WP 02-40235
Samples from alder wood (Alnus glutinosa (L.) Gaertn. subsp. barbata (C.A.Mey) Yalt.) were impregnated according to ASTM D 1413-88 with boron compounds (boric acid, borax, sodium perborate), vinyl monomers (styrene, methyl methacrylate), Tanalith-CBC, Phosphoric acid, Vacsol, Immersol, Polyethylene glycole (PEG-400) and their mixed solutions of chemicals in order to determine their combustion pro...
A Temiz, Ü C Yildiz


Bending Properties of FRT OSB
2012 - IRG/WP 12-40600
Fire retardant treated (FRT) oriented strandboard (OSB) and plywood of different widths were tested in static bending to determine width effects. Results were consistent with previous width effect studies and showed that increasing specimen width results in a decrease in sample MOR properties among all the sample groups tested in this study. Increasing sample width for OSB samples leads to more ...
J M Hill, H M Barnes, S Q Shi


Fire retardant treated wood and plywood: A comparative study Part III. Combustion properties of treated wood and plywood
2002 - IRG/WP 02-40236
The fire retardant treated and untreated plywood and alder wood samples were prepared with the aim to investigate the effects of the way of treatment on the combustion properties. Alder wood was used for the preparation of plywood. Boric acid and borax were used as fire retardant. The plywood samples were impregnated by using three different methods; first group samples were impregnated by soaki...
S Çolak, A Temiz, Ü C Yildiz, G Çolakoglu


Effects of nano-wollastonite impregnation on fire resistance and dimensional stability of Poplar wood
2012 - IRG/WP 12-40595
The fire-retardant properties of Nano-Wollastonite (NW) in poplar wood (Populus nigra) were determined in this study. Some physical properties such as water absorption, volumetric swelling and Anti-Swelling Efficiency (ASE) were also measured. Specimens were prepared according to the ISO 11925 standard for the fire-retarding properties, and ASTM D4446-2002 standard for the physical properties. Imp...
A Karimi, A Haghighi Poshtir, H Reza Taghiyari, Y Hamzeh, A Akbar Enayati


Fire retardant treated wood products – Properties and uses
2016 - IRG/WP 16-30701
Wood is combustible, but can still perform very well in fire, especially for load bearing structures. However, visible wood surface may not fulfil the fire requirements in building codes and fire retardant treatments may be an option. The highest reaction to fire classification for combustible products may then be reached. However, the excellent fire performance of the virgin fire retardant treate...
B Östman, L Tsantaridis


The biostatic effect of copper on decay of fire retardant-treated mining timber
1991 - IRG/WP 1507
Blocks of Eucalyptus grandis were treated with 20kg/m³ ammonium sulphate as fire retardant and challenged with Coriolus versicolor. Replicates were soil buried. A second set of blocks was treated with retardant and copper at 6.6 kg/m³ (ie 1% w/w), and challenged similarly. After 8 weeks weight losses produced by Coriolus versicolor in untreated, retardant treated and copper supplemented blocks w...
G D Shelver, E A Shelver, A A W Baecker


Chapter 6 - Preservatives of bamboo
2007 - IRG/WP 07-10635-06
Almost all currently available oil-borne, water-borne and compound types of preservatives suitable for the preservation of bamboo or wood have been described along with their classifications, applications, formulations, merits and demerits, history of invention or discovery and development. The preservatives suitable for wood are also considered suitable for bamboo....
A K Lahiry


Evaluation of the fire retardant efficacy and leach resistance of an amino resin fire retardant - Preliminary report
1983 - IRG/WP 3260
The Early Fire Hazard Indices of untreated Pinus radiata were determined by testing to Australian Standard 1530, Part 3 - 1976. Differences in the performance of heartwood and sapwood were noted, with heartwood samples giving higher Ignitability, Heat Evolved and Spread of Flame indices. The treatability of Pinus radiata with Pyrogard H was assessed, and backsawn sapwood treated more effectively t...
W D Gardner, P N Alexiou, P Lind, D Butler


Serviceability modeling-Predicting and extending the useful service life of FRT-plywood roof sheathing
2000 - IRG/WP 00-20210
One of the most, if not the most, efficient methods of extending our existing forest resource is to prolong the service life of wood currently in-service by using those existing structures to meet our future needs (Hamilton and Winandy 1998). It is currently estimated that over 7 x 109 m3 (3 trillion bd. ft) of wood is currently in service within the United States of America (PATH 1999). Research ...
J E Winandy


Serial techniques for producing fire-retardant wood products
1997 - IRG/WP 97-30127
A series of techniques including fire-retarders denoted by WFR-1, WFR-2. WFR and their applications in producing fire-retardant wood (WFR wood), fire-retardant plywood (WFR plywood), fire-retardant particleboard (WFR particleboard) and fire-retardant MDF (WFR MDF) were investigated The fire retarders were low toxic, decay resistant and less leachable. The treated wood and WFR panels were of excell...
Zhu Jia Qi, Liu Yan Ji, Gao Chao Ying


Distribution of fire retardant chemicals in kempas (Koompassia malaccensis)
1994 - IRG/WP 94-40037
Samples of Kempas (Koompassia malaccensis) heartwood were treated by vacuumpressure impregnation with solutions of monammonium phosphate, diammonium phosphate, ammonium sulphate or a borax-boric acid mixture. A commercial saltbased fire retardant formulation was also used. After slow air drying, the treated wood samples were sub-divided and zonal analysis carried out in order to determine the grad...
A R A Malek, R J Murphy


Fire, flame resistance and thermal properties of oil thermally-treated wood
2007 - IRG/WP 07-40361
Oil thermal treatment, first developed by German scientists, is a promising technology for improving the durability and dimensional stability of wood for outdoor above-ground residential uses such as siding and shingles. The present authors’ previous research showed that 220ºC is an optimal treatment temperature, with 2 hours’ treatment producing wood with significantly improved moisture and ...
Jieying Wang, P Cooper


Surface color and roughness characteristics of medium density fiberboard (MDF) panels treated with fire retardants
2008 - IRG/WP 08-40420
The objective of this study was to determine surface characteristics and color change properties of Medium Density Fiberboard (MDF) treated by fire retardants (FR) with 10% concentration. Experimental panels were made using by melamine ureaformaldehyde (MUF) adhesive having 10%, 15%, 20% of melamine. The surface properties of the samples were determined using a fine stylus technique. Three roughn...
D Ustaömer, M Usta, S Hiziroglu


Extensive review of fire-retardant wood composites researches
2009 - IRG/WP 09-40471
The increased demand for public safety has led to greater interest in fire retardant materials in the recently years. Legislation relating to safety in the home, in work locations, on transport facilities and in public places continues to produce new regulation. There is average 524 thousand structure fires occurred every year in US, 3757 civilian in death, about 20 thousand civilian in juries, di...
Zhilin Chen, Zhiyong Cai, Feng Fu


Progress in Fire-Retardant Research on Wood and Wood-Based Composites: a China Perspective
2009 - IRG/WP 09-40476
The fire retardant research on wood and wood-based composites, which was carried out in China in the past two decades, was reviewed with 55 references. While many kinds of fire retardants for wood and wood-based composites have been studied, the mainstream is still the compound or the mixture containing phosphorus, nitrogen and boron elements, which can be used in the form of water solution in th...
Wang Qingwen, Wang Fengqiang, Hu Yunchu, Li Jian


Mould growth on wood-based materials – a comparative study
2010 - IRG/WP 10-20455
Ten different wood-based materials - preservative-treated wood, fire retardant-treated wood, modified wood, WPCs and untreated references of pine sapwood and spruce - were tested for mould growth according to SP method 2899 during 42 days at 90% RH and 22°C. Even though the results must be interpreted carefully, they indicate significant differences in mould resistance between the materials tes...
P Johansson, J Jermer


The Effects of Some Fire Retardant Chemicals on the Decay Resistance of Medium Density Fiberboard (MDF)
2010 - IRG/WP 10-30536
The objective of this study was to determine the decay resistance of Medium Density Fiberboard (MDF) treated with 5% and 10% concentration of various fire retardant (FR) chemicals. Experimental panels were produced using by melamine-urea-formaldehyde (MUF) resins having 10%, 15% and 20% of melamine content. MDF specimens were subjected to decay resistance test performed according to modified EN 11...
D Ustaömer, M Usta, Ü C Yildiz, S Yildiz, E D Tomak


Effects of Nano-Wollastonite on Ignition Time Reduction in MDF
2012 - IRG/WP 12-40576
Effects of wollastonite nano-fibers on ignition time reduction in medium density fiberboard were studied. Nanowollastonite was applied at 5, 10, 15, and 20 g/kg dry weight basis of wood fibers and compared with control specimens. Two application methods of nanowollastonite were used: surface application, and internal application. Specimens of 150×130×9 mm were prepared and the ignition times wer...
H Reza Taghiyari, H Rangavar, P Noori, A Karimi


Fire performance of the wood treated with retardant
2012 - IRG/WP 12-40591
To prepare the eco-friendly fire retardant wood, Japanese red pine (Pinus Densiflora), hemlock (Tsuga Heterophylla), and radiate pine (Pinus Radiata) were treated with inorganic chemicals, such as sodium silicate, ammonium phosphate, and ammonium boric acid. Different combination and concentration of those chemicals were injected by pressure treatment methods. The electron-beam treatment was used ...
Jong In Kim, Mi-ran kang, Sang bum Park, Dong won Son


Mould growth on wood-based materials – a simulated in-service study
2012 - IRG/WP 12-20503
Ten different wood-based materials including preservative-treated wood, fire retardant-treated wood, modified wood, WPCs and untreated references of pine sapwood and spruce were placed in three different environments (an attic and two crawl spaces) for a period of 26 months. Mould growth was analysed at five to seven month intervals in an effort to map the growth development. The relative humidit...
G Bok, P Johansson, J Jermer


Wood-leather panels – A biological, fire retardant building material
2012 - IRG/WP 12-40615
The poor flame retardant properties of wood-based products are among the severest obstacles, hindering its use in the commercial building sector. Recently, some attempts to improve the fire properties, relying on inflammable salts or reactive halogen compounds, have been presented, although they either cause problems with machining or embody harmful compounds (halogen derivates). In this paper, ...
S Wieland, U Stöckl, T Grünewald, S Ostrowski, A Petutschnigg


Effect of electron beam irradiation on the fire retardant penetration into wood
2013 - IRG/WP 13-40642
Electron beam processing which can fast and easy change the nature of the material has received considerable attention recently. Studies using electron beam has been conducted in various fields and it has been applied in many industrial sectors. Electron beam has higher energy than other electromagnetic waves. It has excellent object permeability. It affects degradation of intermolecular cross-lin...
Dong won Son, Jong Sin Lee, Mee Ran Kang, Sang Bum Park


Laboratory investigation of fire protection coatings for creosote-treated timber railroad bridges
2014 - IRG/WP 14-30639
As the incidence of timber railroad bridge fires increases, so has the need to develop protective measures to reduce the risk from accidental ignitions primarily caused by hot metal objects. Of the six barrier treatments evaluated in the laboratory for their ability to protect timbers from fires sourced with ignition from hot metal objects only one intumescent coating provided adequate fire prote...
C A Clausen, R H White, J P Wacker, S T Lebow, M A Dietenberger, S L Zelinka, N M Stark


Fire resistance of wood treated with potassium carbonate and silanes
2014 - IRG/WP 14-30657
This paper reports on the effect that organosilicon compounds and potassium carbonate and urea (PCU) have on wood flammability. The study focus on reducing wood flammability by promoting char formation through manipulation of the condensed phase decomposition chemistry. Potassium carbonate is known as an effective fire retardant, however it is easily leached out from wood and increases its hygrosc...
B Mazela, M Broda, W Perdoch


Experimental Measurements of Fire Retardants on Plywood at Fire Test
2015 - IRG/WP 15-40709
The use and development of wood composite materials increased in the past few years. However, in Brazil there are some restrictions on these products regarding their use, since it could be considered a potential risk at a fire situation. Thus, becomes evident the need for researches aiming to fit these in safety standards. This study aims to evaluate the efficiency of two new fire retardant produc...
G C A Martins, L A Marcolin, J M Vidal, C Calil Jr


Next Page