IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 1114 documents. Displaying 25 entries per page.


Different levels of acetylation lead to groupwise upregulation of non-enzymatic wood degradation genes of Rhodonia placenta during initial brown-rot decay
2020 - IRG/WP 20-10958
Rhodonia placenta, often used as a model fungus to represent brown rot fungi, uses a two-stepped degradation mechanism to degrade wood. Regarding the overcoming of wood protection systems the initial degradation phase seems to be the crucial point. A new laboratory test enables the separation of the non-enzymatic oxidative and the enzymatic degradation phases, which has previously been proven chal...
M Kölle, R Ringman, A Pilgård


FTIR analysis of wood blocks decayed by brown-rot fungi
2020 - IRG/WP 20-10959
Calibration curves of the relative lignin contents in Cryptomeria japonica decayed by brown-rot fungi were developed with Infrared Spectroscopy and Klason technique. First, wood decay test was conducted using brown-rot fungi (Fomitopsis palusris, F. pinicola, Wolfiporia cocos, Gloeophyllum trabeum, and Neolentinus suffrutescens) and white-rot fungus (Trametes versicolor) was used as a comparison. ...
R Kondo, Y Horikawa, R Kose, M Yoshida


The iron reduction by chemical components of wood blocks decayed by wood rotting fungi
2021 - IRG/WP 21-10979
Brown-rot fungi, a group of wood rotting fungi, is well known to be one of major microorganisms that cause the deterioration of wooden buildings in Japan and have been considered to use chelator-mediated Fenton (CMF) reaction in concert with hydrolytic and redox enzymes for degradation of wood cell wall. CMF can be described as a non-enzymatic degradation system that utilizes hydroxyl radicals pro...
R R Kondo, Y Horikawa, K Ando, B Goodell, M Yoshida


Mechanical and biological durability properties against soft-rot and subterranean termite in the field (grave-yard test) of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification in an opened or in a closed system
2021 - IRG/WP 21-40917
This paper presents mechanical and biological durability properties in soil beg test (soft-rot test) and field test (grave-yard test) against subterranean termite of the wood modified with an aqueous vinylic derivative of glycerol/polyglycerol or maleic anhydride cured in an opened or in a closed system. Wood modification was performed through impregnation of European beech (Fagus sylvatica) with ...
M Mubarok, H Militz, S Dumarcay, I W Darmawan, Y S Hadi, P Gerardin


Durability against fungal decay of sorbitol and citric acid (SorCA) modified wood
2022 - IRG/WP 22-40928
Most European-grown wood species are susceptible to biological degradation, specifically, they suffer from a poor resistance against wood-destroying fungi. Therefore, prior to outdoor exposure, wood has to be treated either by applying a protective coating on its surface or by full-volume impregnation with antifungal chemicals. However, due to environmental and health concerns, the most frequently...
K Kurkowiak, L Emmerich, H Militz


Steam Pre-conditioning Treatment Prior to Acetylation: Impact on Dimensional Stability, Moisture Response Behaviour, and White-Rot Fungal Resistance of Hevea brasiliensis and Mitragyna ciliata Wood
2022 - IRG/WP 22-40930
The effect of steam pre-conditioning treatment on the dimensional stability, moisture response behaviour, and durability against white-rot fungus P. chrysosporium of acetylated Hevea brasiliensis and Mitragyna ciliata wood species were assessed. Defect-free specimens of both species from the top, middle, and base positions were selected, prepared according to ASTM D143-09 & ASTM D-2017 standards a...
E Uchechukwu Opara, J Mayowa Owoyemi, J Adeola Fuwape


Evaluation of Decay Resistance for the Larch Wood Heat-treated with Superheated Steam
2022 - IRG/WP 22-40956
Heat-treatment of wood is a process that involves applying heat ranging 160–260°C to improve its physico-mechanical properties and resistance against wood rot fungi. The level of the changes in the wood properties by heat-treatment differs depending on the temperature and duration of heat-treatment, as well as the types of heat transfer media used for heat-treatment. The heat-treatment on wood ...
Y Park, S-M Yoon, H Kim, W-J Hwang


A novel cellulose-binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11019
Wood-rotting basidiomycetes are the major organisms decomposing wood in nature. They are classified into two groups based on their decay modes; white-rot fungi and brown-rot fungi. White-rot fungi secrete various cellulolytic enzymes during the wood degradation process. The enzymes are known to be often appended with a cellulose binding domain (CBD) which assists the activity of catalytic domain. ...
Y Kojima, N Sunagawa, M Aoki, M Wada, K Igarashi, M Yoshida


Morphological observation of wood at the early stages of decay in brown rot and white rot
2023 - IRG/WP 23-11020
Wood rotting fungi, the fungal species causing biodeterioration for wood building, are generally classified into white-rot, brown-rot and soft-rot fungi based on their decay modes. Since white-rot and brown-rot fungi are known to reduce wood strength significantly, it is important to clarify the mechanisms of their wood degradation. White-rot fungi reduce wood strength as the decay progress and de...
R Tsukida, T Hatano, Y Kojima, Y Horikawa, S Nakaba, R Funada, M Yoshida


The cellulose binding mechanism of a novel cellulose binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11021
In nature, wood decay is caused by various wood-rotting basidiomycetes. Wood-rotting basidiomycete are mainly divided into white-rot fungi and brown-rot fungi. Their main carbon source is cellulose of the wood cell wall during wood decay, and they produce a variety of enzymes to decompose cellulose. The cellulolytic enzymes often possess a cellulose binding domain (CBD) as an additional domain con...
M Aoki, Y Kojima, M Wada, M Yoshida


Research on gaseous COS degradation by brown-rot fungus Gloeophyllum trabeum
2024 - IRG/WP 24-11033
Physiological studies of wood rotting fungi have mostly focused on the metabolism of carbon and nitrogen sources, which constitute the dominants components of wood. On the other hand, despite the physiological importance of trace elements such as sulfur, studies on their acquisition sources and metabolic pathways are limited. Until now, wood rotting fungi have been thought to utilize slight amount...
R Iizuka, R Tsukida, Y Katayama, M Yoshida


A novel cellulose-binding domain from the brown-rot fungus that can be used to evaluate cellulose in wood
2024 - IRG/WP 24-11046
Wood-rotting basidiomycetes are the primary microorganisms that decay wood in nature. They are classified as white-rot fungi and brown-rot fungi by the difference in decaying types. White-rot fungi secrete a variety of cellulolytic enzymes during wood degradation. These enzymes often have an additional cellulose-binding domain (CBD) that adsorbs to the cellulose surface and localizes the catalytic...
Y Kojima, N Sunagawa, S Tagawa, T Hatano, S Nakaba, M Aoki, M Wada, K Igarashi, M Yoshida


Synthetic Oxalate/ß-glucan Fungal Extracellular Matrix Demonstrates Potential Inhibition of Extracellular Enzyme Diffusion into Wood Cell Walls, and Calls into Question the Role of Enzymes in Wood Decay
2025 - IRG/WP 25-11053
ß-glucan is the major component of the extracellular matrix (ECM) of many fungi, including wood degrading fungi. Many of these species also secrete oxalate into the ECM. Our research demonstrates that ß-glucan forms a novel, previously unreported, hydrogel at room temperature with oxalate. This finding better explains the gel-like nature of the fungal ECM. Oxalate, at relatively low levels, was ...
B Goodell, G A Tompsett, G Perez-Gonzalez, K Mastalerz, M Timko


Distribution of Crystalline Cellulose-Binding Domain CBM104 in Wood Rotting Fungi
2025 - IRG/WP 25-11073
Wood rotting fungi play a crucial role in biodeterioration of wood. Many brown-rot fungi are known to rapidly degrade cellulose in wood despite lacking enzymes with cellulose-binding domains. This has led to the hypothesis that they rely on a non-enzymatic degradation system. We recently discovered a novel cellulose-binding domain, CBM104, in the brown-rot fungus Gloeophyllum trabeum. In this stud...
Y Kojima, N Sunagawa, M Aoki, S Tagawa, M Wada, K Igarashi, M Yoshida


Investigation of oxalic acid production in brown-rot fungi
2025 - IRG/WP 25-11074
Brown-rot fungi play a crucial role as wood decomposers in forests and are also known as the main cause of biodeterioration of wooden buildings in Japan. Therefore, understanding their decomposition mechanisms is important for the maintenance and preservation of wooden structures. While white-rot fungi generally use enzyme-system for degradation, many brown-rot fungi lack cellobiohydrolases which ...
S Matsumoto, R Tsukida, T Ito, M Iritani, M Yoshida


Effect of the Cellulose-Binding Domain Associated with Xylanase on the Degradation of Softwood and Hardwood Xylan
2025 - IRG/WP 25-11078
Brown rot fungi rapidly degrade hemicellulose, which is recognized as a key decomposition process during the early stages of wood decay. Brown rot fungi possess multiple genes encoding hemicellulose-degrading enzymes, suggesting that enzymatic hydrolysis plays an important role in this process. Hemicellulases produced by these fungi often contain an additional domain classified as carbohydrate-bin...
R Tsukida, Y Kojima, S Kaneko, M Yoshida


Synergistic effect of the association of Prosopis juliflora polyphenolic extractives with tebuconazole on the growth inhibition of brown and white rot fungi: a solution to increase the naturality and safety of wood preservation treatment
2025 - IRG/WP 25-20732
The antifungal effect of catechin and extractives from Prosopis juliflora was studied against one white rot fungus, Trametes versicolor (TV), and one brown rot fungus, Rhodonia placenta (PP). The extractives from Prosopis julilfora were crude mesquitol and pure mesquitol. Tebuconazole was used in this study as a known fungicide against the two named fungi. Wood protection using fungicides can be h...
J Owino, J Tuimising, F Mangin, P Gérardin, A Kiprop, C Gérardin-Charbonnier


Effect of photodegradation on fungal colonization on wood during initial stage of brown-rot decay
2025 - IRG/WP 25-41024
Photodegradation and decay may happen simultaneously on wood under many exposure conditions. The aim of this study was to explore the effect of photodegradation on fungal colonization during initial stage of brown-rot decay of wood. For this purpose, southern pine (Pinus spp.) wood was exposed to accelerated UV weathering for different durations, and then decayed by a brown rot fungus (Gloeophyllu...
Y Wang, Y Peng, J Cao


Microbiological degradation of wooden piles in building foundations
1988 - IRG/WP 1370
White rot, soft rot and bacterial attack have been detected in softwood piles under buildings. In some cases bacteria were found to be the main degradation organisms in the studied piles. The water content of degraded piles was very high. The compression strength was quite low also in the piles deteriorated by bacteria. The density of wood was very variable, and the degree of degradation could not...
L Paajanen, H Viitanen


Collaborative soft rot tests. Names and addresses of collaborators
1973 - IRG/WP 231
IRG Secretariat


Dimensional stability and decay resistance of hot-melt self-bonded particleboard by surface benzylated pine chips
1991 - IRG/WP 3652
Akamatsu (Pinus densiflora Sieb. et Zucc: Japanese red pine) particles were pretreated with 40% NaOH solution and benzylated with benzyl chloride, and the surface of particle was converted into meltable materials. Hot-melt self bonded particleboard having smooth and high glossiness surface was prepared by hot pressing at 150°C and 1.96 MPa without using any conventional adhesives. Dimensional sta...
M Kiguchi, K Yamamoto


Comité International Permanent pour la Recherche sur la Préservation des Matériaux en Milieu Marin. Information from the Wood Group
1980 - IRG/WP 460
E G B Jones


Soft rot penetration - Effect of groundline maintenance treatment on poles in sevice
1983 - IRG/WP 3263
R S Johnstone


Improved techniques designed for evaluation of fungicides in soil for control of dry rot fungus Serpula lacrymans
1985 - IRG/WP 2238
Improved techniques provide a laboratory method for the evaluation of chemicals in soil for control of dry rot fungus Serpula lacrymans. Results with their application to three chemicals were reported. These techniques are useful to eliminate chemicals lacking the necessary toxicity and weatherbility for dry rot control when the chemicals have been applied to the soil....
M Takahashi, K Nishimoto


The restricted distribution of Serpula lacrymans in Australian buildings
1989 - IRG/WP 1382
Temperature data has been gathered over a number of years, not only for flooring regions of various buildings in Melbourne, but also within roof spaces and external to the buildings. Findings are discussed in relation to the distribution of Serpula lacrymans within Australia, its restriction to certain types of building construction and its restriction to flooring regions. The subfloor spaces of b...
J D Thornton


Previous Page | Next Page